The origin of the weak itinerant magnetism in materials such as TiBe2 and ZrZn2 is investigated. The huge peak in the density of states at the Fermi energy is attributed to a special symmetry of the C15 structure: no crystal field splitting of the d levels occurs in the case of coordination by spherical ligands. Crystal field splitting is also investigated for the f orbitals in C15 structures such as PuZn2 and ThMg2. It is observed that the situation in f levels is more complicated than the d levels because the characteristics of the crystal field splitting for f levels does not only depend on the the local point symmetry of the compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/28/6/065501 | DOI Listing |
Sci Rep
January 2025
Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Institute of Bioproducts and Paper Technology, Graz University of Technologyy, Inffeldgasse 23, 8010 Graz, Austria.
The mechanical properties of metal-organic frameworks (MOFs) are of high fundamental and practical relevance. A particularly intriguing technique for determining anisotropic elastic tensors is Brillouin scattering, which so far has rarely been used for highly complex materials like MOFs. In the present contribution, we apply this technique to study a newly synthesized MOF-type material, referred to as GUT2.
View Article and Find Full Text PDFChemistry
January 2025
Huazhong University of Science and Technology, 1037 Luoyu Road, 430074, Wuhan, CHINA.
Block copolymer (BCP) microparticles, which exhibit rapid change of morphology and physicochemical property in response to external stimuli, represent a promising avenue for the development of programmable smart materials. Among the methods available for generating BCP microparticles with adjustable morphologies, the confined assembly of BCPs within emulsions has emerged as a particularly facile and versatile approach. This review provides a comprehensive overview of the role of responsive surfactants in modulating interfacial interactions at the oil-water interface, which facilitates controlled BCP microparticle morphology.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Rheology Department, Polymat Institute, University of the Basque Country, 20018 Donostia-San Sebastian, Euskadi, Spain.
This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.
View Article and Find Full Text PDFMolecules
January 2025
Department of Engineering Science, The University of Electro-Communications, Chofu 182-8585, Tokyo, Japan.
A new compound [Y(sq)(HO)] (Y-sq; sq = squarate (CO)) was prepared and structurally characterized. Since the RE-sq family (RE = Y, Dy, Yb, Lu) gave isostructural crystals, the objective of this study is to explore the effects of diamagnetic dilution on the SIM behavior through systematic investigation and comparison of diamagnetically diluted and undiluted forms. The 1%-Diluted Dy compounds, Dy@Y-sq and Dy@Lu-sq, showed AC magnetic susceptibility peaks without any DC bias field (), whereas undiluted Dy-sq showed no AC out-of-phase response under the same conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!