Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/eurheartj/ehv736 | DOI Listing |
Front Med (Lausanne)
December 2024
Department of Optics and Photonics, Wrocław University of Science and Technology, Wrocław, Poland.
Background And Objective: The study examines the relationship between ocular rotations and cardiovascular functions through detailed biomechanical analysis. The study documents specific patterns of ocular movements and their synchronization with cardiovascular activity, highlighting significant correlations. These findings provide a basis for understanding the opto-biomechanical interplay between ocular and cardiovascular dynamics.
View Article and Find Full Text PDFSince visible light communication (VLC) uses light-emitting diode (LED) as transmitters, it has dual functions of illumination and communication. To meet flexible lighting and energy-saving needs, we propose a novel, to the best of our knowledge, dimming control scheme for spectrally efficient clipping-free multilayer optical orthogonal frequency division multiplexing (CFMO-OFDM)-based VLC systems. In order to achieve high dynamic-range dimming control for LEDs, the time-domain CFMO-OFDM signals are first grouped based on frequency-domain subcarrier distribution.
View Article and Find Full Text PDFWe experimentally demonstrate a cost-effective dual-polarization quadrature phase shift keying (DP-QPSK) coherent passive optical network (PON) system that operates at 100 Gbits/s/λ. This system utilizes distributed feedback lasers (DFBs) and a carrier recovery algorithm facilitated by a bifunctional frequency-domain pilot tone (FPT). To reduce costs in coherent PON implementations, low-cost DFBs are employed as the sole light sources, replacing the more expensive external cavity lasers (ECLs) at both the optical line terminal (OLT) and the optical network units (ONUs).
View Article and Find Full Text PDFSensitive detection of incident acoustic waves over a broad frequency band offers a faithful representation of photoacoustic pressure transients of biological microstructures. Here, we propose a plasmon waveguide resonance sensor for responding to the photoacoustic impulses. By sequentially depositing Au, MgF, and SiO films on a coverslip, a composite waveguide layer produces a tightly confined optical evanescent field at the SiO-water interface with extremely strong electric field intensity, enabling the retrieval of photoacoustic signals with an estimated noise-equivalent-pressure (NEP) sensitivity of ∼92 Pa and a -6-dB bandwidth of ∼208 MHz.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China.
Photonic simulators are increasingly used to study physical systems for their affluent manipulable degrees of freedom. The advent of photonic chips offers a promising path towards compact and configurable simulators. Thin-film lithium niobate chips are particularly well suited for this purpose due to the high electro-optic coefficient, which allows for the creation of lattices in the frequency domain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!