Reverse function of ROS-induced CBL10 during salt and drought stress responses.

Plant Sci

Department of Biological Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea. Electronic address:

Published: February 2016

Cellular levels of Ca(2+) and reactive oxygen species (ROS) are maintained at low levels in the cytosol but fluctuate greatly when acting as second messengers to decode environmental and developmental signals. Phytohormones are primary signals leading to various changes in ROS or Ca(2+) signaling during synergistic and antagonistic cross-talk. In this study, we found that brassinosteroids (BRs), hormones involved in diverse plant developmental processes, promote ROS production. To identify downstream signaling components of ROS during BR-mediated plant development, we searched for genes whose expression remained unchanged by ROS only in BR- signaling mutants and found calcineurin B-like (CBL) 10, which encodes a CBL should be changed to CBL10. protein that senses calcium. ROS-induced CBL10 expression was nullified and endogenous CBL10 expression in the shoot was low in the BR-signaling mutant. Using a cbl10 mutant and a transgenic plant overexpressing CBL10, we showed that BR sensitivity during hypocotyl growth decreased in the cbl10 mutant under salt stress, providing an additional mechanism for positive regulation of salt stress by CBL10. We also demonstrated that CBL10 negatively affects tolerance to drought and is not mediated by abscisic acid-induced signaling. Our results suggest that Ca(2+) signaling through CBL10 differently affects the response to abiotic stresses, partly by regulating BR sensitivity of plant tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2015.11.006DOI Listing

Publication Analysis

Top Keywords

cbl10
10
ros-induced cbl10
8
ca2+ signaling
8
cbl10 expression
8
cbl10 mutant
8
salt stress
8
ros
5
signaling
5
reverse function
4
function ros-induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!