Osmotically inducible protein (OsmC) and organic hydroperoxide resistance protein (Ohr) are small, thiol-dependent peroxidases that comprise a family of prokaryotic protective proteins central to the defense against deleterious effects of organic hydroperoxides, which are reactive molecules that are formed during interactions between the host immune system and pathogens. Trichomonas vaginalis, a sexually transmitted parasite of humans, possesses OsmC homologues in its hydrogenosomes, anaerobic mitochondrial organelles that harbor enzymes and pathways that are sensitive to oxidative damage. The glycine decarboxylase complex (GDC), which consists of four proteins (i.e., L, H, P and T), is in eukaryotes exclusively mitochondrial enzymatic system that catalyzes oxidative decarboxylation and deamination of glycine. However, trichomonad hydrogenosomes contain only the L and H proteins, whose physiological functions are unknown. Here, we found that the hydrogenosomal L and H proteins constitute a lipoate-dependent redox system that delivers electrons from reduced nicotinamide adenine dinucleotide (NADH) to OsmC for the reductive detoxification of peroxides. Our searches of genome databases revealed that, in addition to prokaryotes, homologues of OsmC/Ohr family proteins with predicted mitochondrial localization are present in various eukaryotic lineages. Therefore, we propose that the novel OsmC-GDC-based redox system may not be limited to T. vaginalis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molbiopara.2016.01.006DOI Listing

Publication Analysis

Top Keywords

glycine decarboxylase
8
decarboxylase complex
8
reductive detoxification
8
detoxification peroxides
8
trichomonas vaginalis
8
redox system
8
proteins
5
osmc
4
osmc incomplete
4
incomplete glycine
4

Similar Publications

Myocardial ischemia/reperfusion injury (MIRI) is a serious clinical complication that is caused by reperfusion therapy following myocardial infarction (MI). Mitochondria-related genes (Mito-RGs) play important roles in multiple diseases. However, the role of mitochondria-related genes in MIRI remains largely unknown.

View Article and Find Full Text PDF

Background And Aims: To better understand C4 evolution in monocots, we characterized C3-C4 intermediate phenotypes in the grass genus Homolepis (subtribe Arthropogoninae).

Methods: Carbon isotope ratio (δ13C), leaf gas exchange, mesophyll (M) to bundle sheath (BS) tissue characteristics, organelle size and numbers in M and BS tissue, and tissue distribution of the P-subunit of glycine decarboxylase (GLDP) were determined for five Homolepis species and the C4 grass Mesosetum loliiforme from a phylogenetic sister clade. We generated a transcriptome-based phylogeny for Homolepis and Mesosetum species to interpret physiological and anatomical patterns in an evolutionary context, and to test for hybridization.

View Article and Find Full Text PDF

Introduction: Stiff person syndrome (SPS) is a rare disease characterized by axial and lower-extremity muscle rigidity, muscle spasm, and pain. Progressive encephalomyelitis with rigidity and myoclonus (PERM) is a variant of SPS. This case is particularly notable for its uncommon initial symptom: orthostatic hypotension, coupled with the presence of multiple antibodies.

View Article and Find Full Text PDF

New insights into the mechanisms and prevention of central nervous system oxygen toxicity: A prospective review.

Life Sci

January 2025

Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Prague, Czech Republic. Electronic address:

Hyperbaric oxygen therapy (HBOT) elevates the partial pressure of life-sustaining oxygen (pO), thereby saving lives. However, HBOT can also cause toxic effects like lung and retinal damage (peripheral oxygen toxicity) and violent myoclonic seizures (central nervous system (CNS) toxicity). The mechanisms behind these effects are not fully understood, hindering the development of effective therapies and preventive strategies.

View Article and Find Full Text PDF

Glycine decarboxylase (GLDC) has been identified to be dysregulated and plays pivotal roles in various cancers. Besides, studies have suggested that GLDC expression is elevated in oral squamous cell carcinoma (OSCC) and associated with a worse prognosis, but the precise role and molecular mechanism of GLDC in OSCC remain unexplored. The current study first confirmed the high expression of GLDC in OSCC and its correlation with worse survival in patients with OSCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!