Discovery of mupirocin, an antibiotic that targets isoleucyl-tRNA synthetase, established aminoacyl-tRNA synthetase as an attractive target for the discovery of novel antibacterial agents. Despite a high degree of similarity between the bacterial and human aminoacyl-tRNA synthetases, the selectivity observed with mupirocin triggered the possibility of targeting other aminoacyl-tRNA synthetases as potential drug targets. These enzymes catalyse the condensation of a specific amino acid to its cognate tRNA in an energy-dependent reaction. Therefore, each organism is expected to encode at least twenty aminoacyl-tRNA synthetases, one for each amino acid. However, a bioinformatics search for genes encoding aminoacyl-tRNA synthetases from Mycobacterium smegmatis returned multiple genes for glutamyl (GluRS), cysteinyl (CysRS), prolyl (ProRS) and lysyl (LysRS) tRNA synthetases. The pathogenic mycobacteria, namely, Mycobacterium tuberculosis and Mycobacterium leprae, were also found to possess two genes each for CysRS and LysRS. A similar search indicated the presence of additional genes for LysRS in gram negative bacteria as well. Herein, we describe sequence and structural analysis of the additional aminoacyl-tRNA synthetase genes found in M. smegmatis. Characterization of conditional expression strains of Cysteinyl and Lysyl-tRNA synthetases generated in M. smegmatis revealed that the canonical aminoacyl-tRNA synthetase are essential, while the additional ones are not essential for the growth of M. smegmatis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721953 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0147188 | PLOS |
Int J Mol Sci
January 2025
Biotechnology Department, Sirius University of Science and Technology, 354349 Sirius, Russia.
In addition to the 20 canonical amino acids encoded in the genetic code, there are two non-canonical ones: selenocysteine and pyrrolysine. The discovery of pyrrolysine synthetases (PylRSs) was a key event in the field of genetic code expansion research. The importance of this discovery is mainly due to the fact that the translation systems involving PylRS, pyrrolysine tRNA (tRNA) and pyrrolysine are orthogonal to the endogenous translation systems of organisms that do not use this amino acid in protein synthesis.
View Article and Find Full Text PDFJ Mol Neurosci
January 2025
Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730, China.
CSF1R-related leukoencephalopathy (CSF1R-L) and AARS2-related leukoencephalopathy (AARS2-L) were two disease entities sharing similar phenotype and even pathological changes. Although clinically, radiologically, and pathologically similar, they were caused by mutation of two different genes. As the rarity of the two diseases, the differential diagnosis of them was difficult.
View Article and Find Full Text PDFDiscov Med
January 2025
Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, 154000 Jiamusi, Heilongjiang, China.
Background: Preventing the progression and recurrence of colorectal cancer (CRC) remains a clinical challenge due to its heterogeneity and drug resistance. This underscores the need to discover new targets and elucidate their cancer-promoting mechanisms. This study analyzed the cancer-promoting mechanisms of tryptophanyl-tRNA synthetase 1 () in CRC.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Boston College, Chemistry, 2609 Beacon Street, 201 Merkert Chemistry Center, 02467, Chestnut hill, UNITED STATES OF AMERICA.
Site-specific incorporation of noncanonical amino acids (ncAAs) into proteins in eukaryotes has predominantly relied on the pyrrolysyl-tRNA synthetase/tRNA pair. However, access to additional easily engineered pairs is crucial for expanding the structural diversity of the ncAA toolbox in eukaryotes. The Escherichia coli-derived leucyl-tRNA synthetase (EcLeuRS)/tRNA pair presents a particularly promising alternative.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Cell Biology, Physiology, and Immunology, University of Córdoba, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain.
Background: Hepatocellular carcinoma (HCC) genetic/transcriptomic signatures have been widely described. However, its proteomic characterization is incomplete. We performed non-targeted quantitative proteomics of HCC samples and explored its clinical, functional, and molecular consequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!