The increased incidence of diabetes and tumors, associated with global demographic issues (aging and life styles), has pointed out the importance to develop new strategies for the effective management of skin wounds. Individuals affected by these diseases are in fact highly exposed to the risk of delayed healing of the injured tissue that typically leads to a pathological inflammatory state and consequently to chronic wounds. Therapies based on stem cells (SCs) have been proposed for the treatment of these wounds, thanks to the ability of SCs to self-renew and specifically differentiate in response to the target bimolecular environment. Here, we discuss how advanced biomedical devices can be developed by combining SCs with properly engineered biomaterials and computational models. Examples include composite skin substitutes and bioactive dressings with controlled porosity and surface topography for controlling the infiltration and differentiation of the cells. In this scenario, mathematical frameworks for the simulation of cell population growth can provide support for the design of bioconstructs, reducing the need of expensive, time-consuming, and ethically controversial animal experimentation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707872 | PMC |
http://dx.doi.org/10.3389/fbioe.2015.00206 | DOI Listing |
J Clin Med
December 2024
Clinic for Masticatory Disorders and Dental Biomaterials, Center for Dental Medicine, University of Zurich, 8006 Zurich, Switzerland.
: Sinus lifting, a procedure to augment bone in the maxilla, may cause complications such as sinusitis due to impaired drainage. This study aimed to assess how sinus lifting impacts airflow in the sinus cavity, which is essential for patients undergoing dental implants. Using computational fluid dynamics (CFD), this research analyzed airflow changes after sinus floor elevation, offering insights into the aerodynamic consequences of the procedure.
View Article and Find Full Text PDFMolecules
December 2024
Chair for Integrated Systems and Photonics, Department of Electrical and Information Engineering, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany.
Biological neural circuits are based on the interplay of excitatory and inhibitory events to achieve functionality. Axons form long-range information highways in neural circuits. Axon pruning, i.
View Article and Find Full Text PDFMol Divers
January 2025
Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases Ministry of Education, Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
Identifying drug-target binding affinity (DTA) plays a critical role in early-stage drug discovery. Despite the availability of various existing methods, there are still two limitations. Firstly, sequence-based methods often extract features from fixed length protein sequences, requiring truncation or padding, which can result in information loss or the introduction of unwanted noise.
View Article and Find Full Text PDFMultimed Man Cardiothorac Surg
January 2025
Respiratory Disease Center, Kyoto Katsura Hospital, Kyoto, Japan.
The plane running between two adjacent pulmonary segments consists of a very thin layer of connective tissue through which the pulmonary vein also runs. To perform an anatomically correct segmentectomy, this segmental plane needs to be divided. Before the operation, the locations of vessels and bronchi are confirmed by three-dimensional computed tomography.
View Article and Find Full Text PDFJ Contemp Dent Pract
September 2024
Department of Orthodontic, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
Aim: This study evaluates long-term shear bond strength (SBS) and enamel micro cracks (MCs) healing after using adhesive pre-coated brackets (APC).
Materials And Methods: A total of eighty extracted human premolar teeth were randomly divided into four experimental groups ( = 20 per group): Control group: Teeth underwent indentation but no bracket bonding; group II : Teeth were subjected to indentation without exposure to thermocycling; group III: Teeth experienced both indentation and thermocycling; group IV: No indentation was applied to the teeth; groups III and IV were further divided into two subgroups to simulate different clinical timelines: Subgroup A (n = 10): Teeth underwent 5,000 thermocycles, equivalent to six months of clinical use. Subgroup B (n = 10): Teeth were subjected to 10,000 thermocycles, representing 12 months of use.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!