Fabrication of polymer derived electrospun nanofibers by electrospinning as chromatographic sorbent bed for ultra-thin layer chromatography (UTLC) is a very demanding topic in analytical chemistry. This review presents an overview of recent development in the fabrication of polymer derived electrospun nanofibers and their applications to design UTLC plates as stationary phases for on-plate identification and separation of analytes from their mixture solutions. It has been reported that electrospun fiber based stationary phases in UTLC have enhanced separation efficiency to provide separation of analyte mixture in a shorter development time than those of traditional particle-based TLC stationary phases. In addition, electrospun UTLC is cost effective and can be modified for obtaining different surface selectivities by changing the polymer materials to electrospun devices. Electrospun UTLC plates are not available commercially till date and efforts are being rendered for their commercialization. The morphology and diameter of electrospun nanofibers are highly dependent on several parameters such as type of polymer, polymer molecular weight, solvent, viscosity, conductivity, surface tension, applied voltage, collector distance and flow rate of the polymer solution during electrospinning process. Among the aforementioned parameters, solution viscosity is an important parameter which is mainly influenced by polymer concentration. This review provides evidence for the fabrication of UTLC plates containing electrospun polymer nanofibers. Furthermore, the future prospects related to electrospinning and its application in obtaining of different types of electrospun nanofibers are discussed. The present communication is aimed to review the work which appeared during 2009-2014 on the application of polymer derived electrospun nanofibers in ultra thin layer chromatography.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cis.2015.12.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!