Solid surfaces with chemical patterning or topographical structure have attracted attention due to many potential applications such as manufacture of flexible electronics, microfluidic devices, microscale cooling systems, as well as development of self-cleaning, antifogging, and antimicrobial surfaces. In many configurations involving patterned or structured surfaces, liquid films are in contact with such solid surfaces and the issue of film stability becomes important. Studies of stability in this context have been largely focused on specific applications and often not connected to each other. The purpose of the present review is to provide a unified view of the topic of stability and rupture of liquid films on patterned and structured surfaces, with particular focus on common mathematical methods, such as lubrication approximation for the liquid flow, bifurcation analysis, and Floquet theory, which can be used for a wide variety of problems. The physical mechanisms of the instability discussed include disjoining pressure, thermocapillarity, and classical hydrodynamic instability of gravity-driven flows. Motion of a contact line formed after the film rupture is also discussed, with emphasis on how the receding contact angle is expected to depend on the small-scale properties of the substrate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cis.2015.11.011DOI Listing

Publication Analysis

Top Keywords

liquid films
12
patterned structured
12
structured surfaces
12
films patterned
8
solid surfaces
8
surfaces
6
stability
4
stability break-up
4
break-up thin
4
liquid
4

Similar Publications

This study focuses on fabricating photonic crystals (PCs) by surfactant-based particle capture at the gas-liquid interface of evaporating sessile droplets. The captured particles form interfacial films, resulting in ordered monolayer depositions manifesting iridescent structural colors. The particle dynamics behind the ordered arrangement is delineated.

View Article and Find Full Text PDF

Enhancement of Thermal, Mechanical, and Oxidative Properties of Polypropylene Composites with Exfoliated Hexagonal Boron Nitride Nanosheets.

ACS Omega

January 2025

Department of Materials Science and Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea.

This study investigates the enhancement of polypropylene (PP) composites through the incorporation of exfoliated hexagonal boron nitride (h-BN) nanosheets. The preparation process involved exfoliating h-BN in a liquid phase using a high-pressure homogenizer, followed by the coating of PP pellets with the exfoliated nanosheets using an acoustic mixer. Melt extrusion was then employed to fabricate h-BN-reinforced PP composite films.

View Article and Find Full Text PDF

Nature provides many examples of the benefits of nanoscopic surface structures in areas of adhesion and antifouling. Herein, the design, fabrication, and characterization of liquid crystal elastomer (LCE) films are presented with nanowire surface structures that exhibit tunable stimuli-responsive deformations and enhanced adhesion properties. The LCE films are shown to curl toward the side with the nanowires when stimulated by heat or organic solvent vapors.

View Article and Find Full Text PDF

Natural biopolymer-based liquid mulching films (LMF) have received widespread attention, whereas the fragile structure and limited functionality have severely restricted their application. Herein, polydopamine-coated montmorillonite micro/nanoparticles enhanced pectin-based sprayable multifunctional liquid mulching films (P-MMT@PDA LMF) were prepared. Dopamine has abundant active sites, and its self-polymerization onto the surface of MMT improves the compatibility of MMT with pectin chains, facilitates the homogeneous dispersion of MMT@PDA in pectin polymers, and makes them more tightly entangled through hydrogen bonding.

View Article and Find Full Text PDF

Phase transitions and morphology control of Langmuir Blodget (LB) films of graphene oxide.

J Colloid Interface Sci

January 2025

Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea. Electronic address:

Hypothesis: Understanding the Langmuir film formation process of flexible and soft materials like graphene oxide (GO) is essential, as it shows different trends compared to the conventional surface pressure-area (π-A) and compressional modulus (ε) isotherms of hard materials. Additionally, the size distribution and mechanical properties of the GO are assumed to affect the distinctive Langmuir-Blodgett (LB) film morphologies, such as overlaps and wrinkles.

Experiment: To gain a deeper insights of phase transitions in GO LB films, we propose a novel analysis of elastic tensile modulus versus surface pressure (|ε|-π) isotherms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!