A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Production, Purification, and Characterization of ¹⁵N-Labeled DNA Repair Proteins as Internal Standards for Mass Spectrometric Measurements. | LitMetric

AI Article Synopsis

  • Oxidative DNA damage in living organisms can lead to mutations and cancer if not repaired, with base excision repair being the primary mechanism involved.
  • Cancer tissues often enhance their DNA repair capabilities, making them more resistant to therapies by quickly fixing damage caused by treatments.
  • The chapter outlines methods developed in the lab for measuring DNA repair protein expression using mass spectrometry and (15)N-labeled proteins as internal standards for accurate quantification.

Article Abstract

Oxidatively induced DNA damage is caused in living organisms by a variety of damaging agents, resulting in the formation of a multiplicity of lesions, which are mutagenic and cytotoxic. Unless repaired by DNA repair mechanisms before DNA replication, DNA lesions can lead to genomic instability, which is one of the hallmarks of cancer. Oxidatively induced DNA damage is mainly repaired by base excision repair pathway with the involvement of a plethora of proteins. Cancer tissues develop greater DNA repair capacity than normal tissues by overexpressing DNA repair proteins. Increased DNA repair in tumors that removes DNA lesions generated by therapeutic agents before they became toxic is a major mechanism in the development of therapy resistance. Evidence suggests that DNA repair capacity may be a predictive biomarker of patient response. Thus, knowledge of DNA-protein expressions in disease-free and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. Our laboratory has developed methodologies that use mass spectrometry with isotope dilution for the measurement of expression of DNA repair proteins in human tissues and cultured cells. For this purpose, full-length (15)N-labeled analogs of a number of human DNA repair proteins have been produced and purified to be used as internal standards for positive identification and accurate quantification. This chapter describes in detail the protocols of this work. The use of (15)N-labeled proteins as internal standards for the measurement of several DNA repair proteins in vivo is also presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4888786PMC
http://dx.doi.org/10.1016/bs.mie.2015.06.044DOI Listing

Publication Analysis

Top Keywords

dna repair
36
repair proteins
20
dna
14
internal standards
12
repair
10
proteins internal
8
oxidatively induced
8
induced dna
8
dna damage
8
dna lesions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!