Purpose: To compare the effects of a traditional set structure and 2 cluster set structures on force, velocity, and power during back squats in strength-trained men.

Methods: Twelve men (25.8 ± 5.1 y, 1.74 ± 0.07 m, 79.3 ± 8.2 kg) performed 3 sets of 12 repetitions at 60% of 1-repetition maximum using 3 different set structures: traditional sets (TS), cluster sets of 4 (CS4), and cluster sets of 2 (CS2).

Results: When averaged across all repetitions, peak velocity (PV), mean velocity (MV), peak power (PP), and mean power (MP) were greater in CS2 and CS4 than in TS (P < .01), with CS2 also resulting in greater values than CS4 (P < .02). When examining individual sets within each set structure, PV, MV, PP, and MP decreased during the course of TS (effect sizes 0.28-0.99), whereas no decreases were noted during CS2 (effect sizes 0.00-0.13) or CS4 (effect sizes 0.00-0.29).

Conclusions: These results demonstrate that CS structures maintain velocity and power, whereas TS structures do not. Furthermore, increasing the frequency of intraset rest intervals in CS structures maximizes this effect and should be used if maximal velocity is to be maintained during training.

Download full-text PDF

Source
http://dx.doi.org/10.1123/ijspp.2015-0602DOI Listing

Publication Analysis

Top Keywords

velocity power
12
cluster sets
12
set structure
8
set structures
8
sets
6
power
5
structures
5
velocity
5
maintenance velocity
4
cluster
4

Similar Publications

Background: Drafting for drag reduction is a tactic commonly employed by elite athletes of various sports. The strategy has been adopted by Kenyan runner Eliud Kipchoge on numerous marathon events in the past, including the 2018 and 2022 editions of the Berlin marathon (where Kipchoge set two official world records), as well as in two special attempts to break the 2 h mark for the distance, the Nike Breaking2 (2017) and the INEOS 1:59 Challenge (2019), where Kipchoge used an improved drafting formation to finish in 1:59:40, although that is not recognized as an official record.

Results: In this study, the drag of a realistic model of a male runner is calculated by computational fluid dynamics for a range of velocities.

View Article and Find Full Text PDF

Isokinetic strength and jumping abilities of teenage soccer players playing in different field positions.

Acta Bioeng Biomech

September 2024

Department of Biomedical Basis of Physical Culture, Faculty of Health Science and Physical Culture, Kazimierz Wielki University in Bydgoszcz, Poland.

Soccer is a sport being performed in a very dynamic manner. It requires soccer players to be able to develop high muscle force in a very short period of time. The aim of the study was to evaluate the strength and jumping abilities of young soccer players playing in different positions on the field.

View Article and Find Full Text PDF

Background: Emerging evidence suggests that spirituality improves patient outcomes, however, this has undergone only limited evaluation in randomized trials. Hypertension is a major cause of cardiovascular morbidity and mortality worldwide.

Objectives: To evaluate whether a spirituality-based intervention, compared to a control group, can reduce blood pressure (BP) and improve endothelial function after 12 weeks in patients with mild or moderate hypertension (HTN).

View Article and Find Full Text PDF

In confluent cell monolayers, patterns of cell forces and motion are systematically altered near topological defects in cell shape. In turn, defects have been proposed to alter cell density, extrusion, and invasion, but it remains unclear how the defects form and how they affect cell forces and motion. Here, we studied +1/2 defects, and, in contrast to prior studies, we observed both tail-to-head and head-to-tail defect motion occurring at the same time in the same cell monolayer.

View Article and Find Full Text PDF

Droplet coalescence in microchannels is a complex phenomenon influenced by various parameters such as droplet size, velocity, liquid surface tension, and droplet-droplet spacing. In this study, we thoroughly investigate the impact of these control parameters on droplet coalescence dynamics within a sudden expansion microchannel using two distinct numerical methods. Initially, we employ the boundary element method to solve the Brinkman integral equation, providing detailed insights into the underlying physics of droplet coalescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!