Detection of Bartonella tamiae, Coxiella burnetii and rickettsiae in arthropods and tissues from wild and domestic animals in northeastern Algeria.

Parasit Vectors

Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar), Inserm 1095, Faculté de Médecine, 27 bd Jean Moulin, 13385, Marseille, Cedex 5, France.

Published: January 2016

Background: In recent years, the scope and importance of emergent vector-borne diseases has increased dramatically. In Algeria, only limited information is currently available concerning the presence and prevalence of these zoonotic diseases. For this reason, we conducted a survey of hematophagous ectoparasites of domestic mammals and/or spleens of wild animals in El Tarf and Souk Ahras, Algeria.

Methods: Using real-time PCR, standard PCR and sequencing, the presence of Bartonella spp., Rickettsia spp., Borrelia spp. and Coxiella burnetii was evaluated in 268/1626 ticks, 136 fleas, 11 Nycteribiidae flies and 16 spleens of domestic and/or wild animals from the El Tarf and Souk Ahras areas.

Results: For the first time in Algeria, Bartonella tamiae was detected in 12/19 (63.2%) Ixodes vespertilionis ticks, 8/11 (72.7%) Nycteribiidae spp. flies and in 6/10 (60%) bat spleens (Chiroptera spp.). DNA from Coxiella burnetii, the agent of Q fever, was also identified in 3/19 (15.8%) I. vespertilionis from bats. Rickettsia slovaca, the agent of tick-borne lymphadenopathy, was detected in 1/1 (100%) Haemaphysalis punctata and 2/3 (66.7%) Dermacentor marginatus ticks collected from two boars (Sus scrofa algira) respectively. Ri. massiliae, an agent of spotted fever, was detected in 38/94 (40.4%) Rhipicephalus sanguineus sensu lato collected from cattle, sheep, dogs, boars and jackals. DNA of Ri. aeschlimannii was detected in 6/20 (30%) Hyalomma anatolicum excavatum and 6/20 (30%) Hy. scupense from cattle. Finally, Ri. felis, an emerging rickettsial pathogen, was detected in 80/110 (72.7%) Archaeopsylla erinacei and 2/2 (100%) Ctenocephalides felis of hedgehogs (Atelerix algirus).

Conclusion: In this study, we expanded knowledge about the repertoire of ticks and flea-borne bacteria present in ectoparasites and/or tissues of domestic and wild animals in Algeria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721140PMC
http://dx.doi.org/10.1186/s13071-016-1316-9DOI Listing

Publication Analysis

Top Keywords

coxiella burnetii
12
wild animals
12
bartonella tamiae
8
animals tarf
8
tarf souk
8
souk ahras
8
6/20 30%
8
spp
5
detected
5
detection bartonella
4

Similar Publications

Acute Q Fever after Kidney Transplantation: A Case Report.

Br J Hosp Med (Lond)

January 2025

Department of Rheumatism and Immunity, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.

Patients receiving kidney transplant experience immunosuppression, which increases the risk of bacterial, viral, fungal, and parasitic infections. Q fever is a potentially fatal infectious disease that affects immunocompromised renal transplant recipients and has implications in terms of severe consequences for the donor's kidney. A patient with acute Q fever infection following kidney transplantation was admitted to the Tsinghua Changgung Hospital in Beijing, China, in March 2021.

View Article and Find Full Text PDF

Hyalomma aegyptium: Observed global distribution, imported specimens, preferred hosts and vector competence.

Ticks Tick Borne Dis

January 2025

Climate Change & Infectious Disesases Group, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210, Austria. Electronic address:

The tortoise tick Hyalomma aegyptium (Linnaeus, 1758) is a three-host tick, predominantly infesting land tortoises of the genus Testudo. A database was compiled, resulting in 557 H. aegyptium georeferenced locations in the Palearctic.

View Article and Find Full Text PDF

Mechanisms of lipid homeostasis in the Coxiella Containing Vacuole.

Biochem Soc Trans

January 2025

Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A.

Coxiella burnetii, the causative agent of human Q fever, is an obligate intracellular bacterial pathogen that replicates in a large, membrane-bound vacuole known as the Coxiella Containing Vacuole (CCV). The CCV is a unique, phagolysosome-derived vacuole with a sterol-rich membrane containing host and bacterial proteins. The CCV membrane itself serves as a barrier to protect the bacteria from the host's innate immune response, and the lipid and protein content directly influence both the CCV luminal environment and interactions between the CCV and host trafficking pathways.

View Article and Find Full Text PDF

Background: causes Q fever, a zoonotic and vector-borne disease. Ticks serve as vectors for this bacterium. This study aimed to determine the prevalence of infection in ticks in Shahr-e-Rey County, Tehran Province.

View Article and Find Full Text PDF

and are two phylogenetically related bacterial pathogens that exhibit extreme intrinsic resistance when they enter into a dormancy-like state. This enables both pathogens to survive extended periods in growth-limited environments. Survival is dependent upon their ability to undergo developmental transitions into two phenotypically distinct variants, one specialized for intracellular replication and another for prolonged survival in the environment and host.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!