Ultraviolet (UV) B is a major factor in melanomagenesis. This fact is linked to the resistance of melanocytes to UVB-induced apoptosis. In this study, we characterized the involvement of Mcl-1L in the regulation of UVB-induced apoptosis in melanocytes and in melanoma cells. In melanocytes, apoptosis was not evident at 24 h after UVB irradiation. The Mcl-1L expression increased after UVB irradiation, and the high Mcl-1L expression continued for at least 24 h. This UVB-dependent increase in Mcl-1L was mediated by the MEK-ERK-pS-STAT3 (STAT3 phosphorylated at Ser727) pathway. The Ser727 phosphorylation facilitated nuclear localization of STAT3. In melanoma cells, the expression levels of Mcl-1L varied depending on the cell line. WM39 melanoma cells expressed high levels of Mcl-1L via the MEK-ERK-pS-STAT3 pathway and were resistant to UVB-induced apoptosis without up-regulation of Mcl-1L. In melanocytes and in WM39 cells, transfection with Mcl-1 siRNA promoted UVB-induced apoptosis. Immunohistochemical studies showed that melanoma cells in in situ lesions expressed high amounts of Mcl-1L. These results indicate that the high expression of Mcl-1L mediated by the MEK-ERK-pS-STAT3 pathway protects melanocytes and melanoma cells from UVB-induced apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gtc.12330DOI Listing

Publication Analysis

Top Keywords

uvb-induced apoptosis
24
melanoma cells
20
melanocytes melanoma
12
mcl-1l
10
high expression
8
expression mcl-1l
8
ser727 pathway
8
pathway protects
8
protects melanocytes
8
uvb irradiation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!