Arsenic, which is a major contaminant of many aquatic ecosystems worldwide, is responsible for serious public health issues. However, life has evolved various strategies for coping with this toxic element. In particular, prokaryotic organisms have developed processes enabling them to resist and metabolize this chemical. Studies based on genome sequencing and transcriptome, proteome and metabolome profiling have greatly improved our knowledge of prokaryotes' metabolic potential and functioning in contaminated environments. The increasing number of genomes available and the development of descriptive and comparative approaches have made it possible not only to identify several genetic determinants of the arsenic metabolism, but also to elucidate their phylogenetic distribution and their modes of regulation. In addition, studies using functional genomic tools have established the pleiotropic character of prokaryotes' responses to arsenic, which can be either common to several species or species-specific. These approaches also provide promising means of deciphering the functioning of microbial communities including uncultured organisms, the genetic transfers involved and the possible occurrence of metabolic interactions as well as the evolution of arsenic resistance and metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsre/fuv050 | DOI Listing |
Environ Manage
January 2025
Department of Engineering, Reykjavik University, Reykjavík, Iceland.
This research assesses heavy metal contamination within the riparian zone of the Danro River, a tributary of the Ganges River basin in India, particularly impacted by sand mining activities. The study conducted analyses on major and trace elements in soil samples, focusing on those identified as ecologically hazardous by the Water Framework Directive of India. Utilizing a combination of indices (Enrichment Factor, Pollution Load Index, and Index of geo-accumulation) and statistical techniques such as Principal Component Analysis (PCA), the investigation aimed to evaluate contamination severity, ecological risks, and pollution sources.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Waste Science and Technology, Luleå University of Technology, Luleå, Sweden.
Improper management of wood impregnation chemicals and treated wood has led to soil contamination at many wood treatment sites, particularly with toxic substances like creosote oil and chromated copper arsenate (CCA). The simultaneous presence of these pollutants complicates the choice of soil remediation technologies, especially if they are to be applied in situ. In this laboratory study, we attempted to immobilise arsenic (As) and simultaneously degrade polycyclic aromatic hydrocarbons (PAHs) (constituents of creosote oil) by applying a modified electrochemical oxidation method.
View Article and Find Full Text PDFJ Med Food
January 2025
Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna (Valencia), Spain.
Recent studies show that inorganic arsenic (As) exerts a toxic effect on the intestinal epithelium, causing a significant increase in its permeability. This disruption of the epithelial barrier may favor the entry of contaminants or toxins into the systemic circulation, thus causing toxicity not only at the intestinal level but possibly also at the systemic level. The present study conducts an evaluation of the protective effect of various dietary supplements and plant extracts against the intestinal toxicity of inorganic As.
View Article and Find Full Text PDFFood Chem X
January 2025
Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China.
Soil contamination with heavy metals poses a significant health risk as these metals can be transferred to humans through agricultural products. This study aimed to identify pumpkin varieties with low cadmium and arsenic accumulation. To this end, we evaluated 25 pumpkin varieties.
View Article and Find Full Text PDFiScience
January 2025
School of Geographical Sciences, University of Bristol, Bristol, UK.
Novel sustainable agricultural strategies that enhance soil nutrients and human nutrition are crucial for meeting global food production needs. Here, we evaluate the potential of "glacial flour," a naturally crushed rock produced by glaciers known to be rich in nutrients (P, K, and micronutrients) needed for plant growth. Our proof-of-concept study, investigated soybean ( var.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!