Glucocorticoids (GCs) are best known for their potent anti-inflammatory effects. However, an emerging model for glucocorticoid (GC) regulation of in vivo inflammation also includes a delayed, preparatory effect that manifests as enhanced inflammation following exposure to an inflammatory stimulus. When GCs are transiently elevated in vivo following exposure to a stressful event, this model proposes that a subsequent period of increased inflammatory responsiveness is adaptive because it enhances resistance to a subsequent stressor. In the present study, we examined the migratory response of human monocytes/macrophages following transient in vivo exposure to stress-associated concentrations of cortisol. Participants were administered cortisol for 6h to elevate in vivo cortisol levels to approximate those observed during major systemic stress. Monocytes in peripheral blood and macrophages in sterile inflammatory tissue (skin blisters) were studied before and after exposure to cortisol or placebo. We found that exposure to cortisol induced transient upregulation of monocyte mRNA for CCR2, the receptor for monocyte chemotactic protein-1 (MCP-1/CCL2) as well as for the chemokine receptor CX3CR1. At the same time, mRNA for the transcription factor IκBα was decreased. Monocyte surface expression of CCR2 but not CX3CR1 increased in the first 24h after cortisol exposure. Transient exposure to cortisol also led to an increased number of macrophages and neutrophils in fluid derived from a sterile inflammatory site in vivo. These findings suggest that the delayed, pro-inflammatory effects of cortisol on the human inflammatory responses may include enhanced localization of effector cells at sites of in vivo inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4828285 | PMC |
http://dx.doi.org/10.1016/j.bbi.2016.01.004 | DOI Listing |
Nat Rev Dis Primers
January 2025
Endocrine Division, Department of Medicine, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Québec, Canada.
Cushing syndrome (CS) is a constellation of signs and symptoms caused by excessive exposure to exogenous or endogenous glucocorticoid hormones. Endogenous CS is caused by increased cortisol production by one or both adrenal glands (adrenal CS) or by elevated adrenocorticotropic hormone (ACTH) secretion from a pituitary tumour (Cushing disease (CD)) or non-pituitary tumour (ectopic ACTH secretion), which stimulates excessive cortisol production. CS is associated with severe multisystem morbidity, including impaired cardiovascular and metabolic function, infections and neuropsychiatric disorders, which notably reduce quality of life.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University. Zhengzhou, Henan, China. Electronic address:
This study investigates the association between prenatal exposure to dioxin-like polychlorinated biphenyls (DL-PCBs) and glucocorticoid and androgenic hormone levels in cord blood. We analyzed cord blood samples from 500 mother-infant pairs from China (2022-2023), focusing on hormones including cortisol, cortisone, dehydroepiandrosterone (DHEA), and androstenedione. The main analysis revealed significant reductions in cortisol levels with increased exposure to PCB-77 (β = -3.
View Article and Find Full Text PDFJ Trace Elem Med Biol
January 2025
Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan. Electronic address:
Background: Arsenic emerges as most potent hazardous element ranked as number one in ATSDR (Agency for Toxic Substances and Disease Registry) list, can easily accumulate in fish, transported to humans via consumption and affect humans and aquatic organisms. Considering above, current experiment designed to evaluate cyto-genotoxicity and histological alterations induced by arsenic in Labeo rohita used as an animal model.
Methods: By applying complete randomized design sampling acclimatized individuals of Labeo rohita (10 batches of 10 each with triplicates) were exposed to nine definitive doses (12, 14, 16, 18, 20, 22, 24, 26 and 28 mgL) of arsenic in glass aquaria to determine 96-h lethal concentration (LC) of arsenic.
Environ Sci Pollut Res Int
January 2025
ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413 115, India.
Fish face health hazards due to high-temperature (T) stress and the toxicity associated with nickel (Ni), both of which can occur in aquatic ecosystems. The accumulation of nickel in fish may pose risks to human health when contaminated fish are consumed. Consequently, the goal of this study was to clarify how selenium nanoparticles (Se-NPs) help Pangasianodon hypophthalmus by reducing the effects of nickel and high-temperature stress.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
Department of Family Medicine, Cumming School of Medicine; University of Calgary; Calgary, Alberta, T2N 1N4; Canada.
Stress is a fundamental adaptive response mediated by the amygdala and Hypothalamus-Pituitary-Adrenal (HPA) axis. Extreme or chronic stress, however, can result in a multitude of neuropsychiatric disorders, including anxiety, paranoia, bipolar disorder (BP), major depressive disorder (MDD), and Post-Traumatic Stress Disorder (PTSD). Despite widespread exposure to trauma (70.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!