Giant tunnel magneto-resistance in graphene based molecular tunneling junction.

Nanoscale

College of Physics Science and Technology, Shenzhen University, Shen-zhen, 518060, China.

Published: February 2016

We propose and theoretically investigate a class of stable zigzag graphene nanoribbon (ZGNR) based molecular magnetic tunneling junctions (MTJs). For those junctions having pentagon-connecting formations, huge tunnel magneto-resistance (TMR) is found. Different from most of the other proposed molecular junctions, the huge TMR in our structures is generic, and is not significantly affected by external parameters such as bias voltage, gate voltage, length of the molecule and width of the ZGNRs. The double pentagon-connecting formation between the molecule and ZGNRs is critical for the remarkable TMR ratio, which is as large as ∼2 × 10(5). These molecular MTJs behave as almost perfect spin filters and spin valve devices. Other connecting formations of the ZGNR based MTJs lead to much smaller TMR. By first principles analysis, we reveal the microscopic physics responsible for this phenomenon.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5nr06585bDOI Listing

Publication Analysis

Top Keywords

tunnel magneto-resistance
8
based molecular
8
zgnr based
8
giant tunnel
4
magneto-resistance graphene
4
graphene based
4
molecular
4
molecular tunneling
4
tunneling junction
4
junction propose
4

Similar Publications

This paper proposes a non-contact current measurement method for three-phase rectangular busbars based on TMR (tunneling magneto-resistance) sensors, due to their advantages of large dynamic range, wide bandwidth, light weight, and easy installation. A non-contact current sensor composed of only three TMR sensors is developed and the TMR sensors are respectively placed at a location with a certain distance from the surface of each rectangular busbar to measure the magnetic fields generated by the busbar currents. To calibrate the developed current sensor, i.

View Article and Find Full Text PDF

A three-dimensional self-consistent spin transport model is developed, which includes both tunnelling transport, leading to tunnelling magneto-resistance, as well as metallic transport, leading to giant magneto-resistance. An explicit solution to the drift-diffusion model is also derived, which allows analysing the effect of both the reference and free layer thickness on the spin-transfer torque polarization and field-like coefficient. It is shown the model developed here can be used to compute the signal-to-noise ratio in realistic magnetic read-heads, where spin torque-induced fluctuations and instabilities limit the maximum operating voltage.

View Article and Find Full Text PDF

We report on large spin-filtering effects in epitaxial graphene-based spin valves, strongly enhanced in our specific multilayer case. Our results were obtained by the effective association of chemical vapor deposited (CVD) multilayer graphene with a high quality epitaxial Ni(111) ferromagnetic spin source. We highlight that the Ni(111) spin source electrode crystallinity and metallic state are preserved and stabilized by multilayer graphene CVD growth.

View Article and Find Full Text PDF

Improving signal-to-noise ratio of magnetic tunnel junction based radio frequency detector via spin-torque ferromagnetic resonance.

Rev Sci Instrum

May 2022

Aptiv Services Poland S.A., Krakow 30-707, Poland and Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.

This article focuses on the spin-torque ferromagnetic resonance (STFMR) technique, which was developed and optimized to investigate spin-transfer effects in magnetic tunnel junctions (MTJ) and spin Hall effect phenomena in ferromagnet/non-magnetic heavy metal bilayer systems. The devices for STFMR are typically fabricated with co-planar waveguides with contact pads for applying radio frequency or direct current, I(I). The device under investigation was a CoFeB/MgO/CoFeB based MTJ with a resistance-area product of 1.

View Article and Find Full Text PDF

A high-precision micro-displacement sensor based on tunnel magneto-resistance effect is reported.We designed and simulated magnetic characteristics of the sensor, and employed chip-level Au-In bonding to implement low-temperature assembly of the TMR devices. We employed the subdivision interpolation technique to enhance the resolution by translating the sine-cosine outputs of a TMR sensor into an output that varies linearly with the displacement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!