We have studied the Raman and infrared spectral response of TbMn2O5 under an applied magnetic field parallel to the easy magnetic a-axis at 4.2 K. Strong spin-lattice coupling in TbMn2O5 is evidenced by a frequency shift of Raman and infrared phonons as a function of magnetic field compared to the phonon response of BiMn2O5 that remains unaffected. The magnetic field behavior of the highest frequency phonons retraces the polarization switching in TbMn2O5 and shows an important frequency softening below 3 T that is modulated by the J 3 and J 4 exchange parameters. The role of the Tb(3+) spin alignment with H is interpreted in terms of a local lattice striction and the contribution of the charge transfer mechanism to the magnetoelectric process is evaluated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/28/5/055901 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!