Nonsyndromic dentin defects classified as type II dentin dysplasia and types II and III dentinogenesis imperfecta are caused by mutations in DSPP (dentin sialophosphoprotein). Most reported disease-causing DSPP mutations occur within the repetitive DPP (dentin phosphoprotein) coding sequence. We characterized the DPP sequences of five probands with inherited dentin defects using single molecule real-time (SMRT) DNA sequencing. Eight of the 10 sequences matched previously reported DPP length haplotypes and two were novel. Alignment with known DPP sequences showed 32 indels arranged in 36 different patterns. Sixteen of the 32 indels were not represented in more than one haplotype. The 25 haplotypes with confirmed indels were aligned to generate a tree that describes how the length variations might have evolved. Some indels were independently generated in multiple lines. A previously reported disease-causing DSPP mutation in Family 1 was confirmed and its position clarified (c.3135delC; p.Ser1045Argfs*269). A novel frameshift mutation (c.3504_3508dup; p.Asp1170Alafs*146) caused the dentin defects in Family 2. A COL1A2 (c.2027G>A or p.Gly676Asp) missense mutation, discovered by whole-exome sequencing, caused the dentin defects in Family 3. We conclude that SMRT sequencing characterizes the DPP repeat region without cloning and can improve our understanding of normal and pathological length variations in DSPP alleles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707025PMC
http://dx.doi.org/10.1002/mgg3.176DOI Listing

Publication Analysis

Top Keywords

dentin defects
16
dentin
9
dentin phosphoprotein
8
repeat region
8
reported disease-causing
8
disease-causing dspp
8
dpp sequences
8
length variations
8
caused dentin
8
defects family
8

Similar Publications

Bio-Obturation for Internal Root Resorption in Contralateral Mandibular Molars: A Five-Year Case Study.

Cureus

December 2024

Endodontics, Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IRN.

Internal root resorption (IRR) is a rare but complex condition characterized by progressive destruction of the internal dentin walls, typically resulting from chronic pulp inflammation, trauma, or infection. Managing apical IRR, particularly in teeth with extensive apical lesions, presents significant challenges due to the limitations of traditional root canal treatment (RCT) and obturation techniques. This report discusses the nonsurgical management of two contralateral mandibular first molars in a 49-year-old male patient, both exhibiting apical IRR and large endodontic lesions.

View Article and Find Full Text PDF

Non-surgical management of gingival cleft.

Minerva Dent Oral Sci

January 2025

Department of Oral Rehabilitation and Maxillofacial Prosthesis, Dental School, University of Turin, Turin, Italy.

The aims of the present case report are to describe the non-surgical management in addition to hyaluronic acid application of two gingival recessions with cleft and to perform a narrative review on the newest evidence of non-surgical treatment of gingival recessions. A 47-year-old female patient with dentine hypersensitivity and pain during brushing has type 1 gingival recession with red Stillman's cleft on 1.4 and 1.

View Article and Find Full Text PDF

Perforating Internal Root Resorption Sealed with Single-Cone Technique Using Bioceramic Sealer: A Case Report.

Am J Case Rep

January 2025

Department of Restorative Dentistry, College of Dentistry, Umm Al-Qura University, Mekkah, Saudi Arabia.

BACKGROUND Internal root resorption (IRR) is a rare dental condition characterized by the progressive resorption of dentin within the root canal, often resulting from infection, trauma, or orthodontic treatment. When IRR progresses to perforation, it creates a communication pathway with periodontal tissues, necessitating effective endodontic therapy and perforation repair. Bioceramic sealers, known for their biocompatibility and flowability, have emerged as a promising alternative to traditional materials for filling and sealing the root canal system.

View Article and Find Full Text PDF

Optimizing natural human-derived decellularized tissue materials for periodontal bone defect repair.

Biochem Biophys Res Commun

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China. Electronic address:

Periodontal disease is a major contributor to tooth loss worldwide in adults. Particularly, periodontal bone defect is a common clinical condition, yet current therapeutic strategies exhibit limited effectiveness. Recently, natural bone graft materials have attracted considerable interest for enhancing bone defect repair due to their superior biocompatibility and osteogenic capabilities.

View Article and Find Full Text PDF

Unlabelled: Guided bone regeneration (GBR) is an alternative treatment for craniofacial bone defects reconstruction through membrane barrier adaptation, such as demineralized dentin material membrane (DDMM). DDMM is used as a substitute for GBR material, which aligns with Green Economy principles, it has a good biological osteoinductive and osteoconductive effects, and its structure resembles bones. The balance of bone remodeling when experiencing craniofacial defects will be altered and allow changes to resorption activity, so the mechanisms of osteoclastogenesis and bone resorption are vital.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!