The resistance of breast cancer to radiotherapy remains a major obstacle to successful cancer management. Radiotherapy may result in DNA damage and activate breast cancer stem cells. DNA damage may lead to activation of the checkpoint kinase (CHK) signaling pathway, of which debromohymenialdisine (DBH) is a specific inhibitor. Radiotherapy also increases the expression of phosphorylated CHK1/2 (pCHK1/2) in the breast cancer cell line, MCF-7, in vitro in a dose-dependent manner. DBH is a relatively stable effective inhibitor that significantly reduces pCHK1/2 expression and MCF-7 proliferation. Low-dose radiotherapy combined with DBH resulted in a higher MCF-7 inhibition rate compared with high-dose radiation alone. This result indicates that the inhibition of the CHK1/2 signal pathway may significantly reduce DNA damage within radiated cells. Radiotherapy may also regulate the proportion of CD44/CD24 MCF-7 cancer stem cells in a dose- and time-dependent manner. However, the stem cell proportion of MCF-7 cells was significantly reduced by treatment with DBH. The inhibition is relatively stable and time dependent. Significant reductions were observed after 3 days of culture (P<0.01). The results of the present study indicate that the DBH-induced downregulation of CHK may provide a novel method of enhancing the effect of radiotherapy and reducing stem cell survival in the MCF-7 cell line.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4665200PMC
http://dx.doi.org/10.3892/ol.2015.3777DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
cancer stem
12
stem cells
12
dna damage
12
mcf-7
6
cancer
6
cells
5
radiotherapy
5
increased activity
4
activity chk
4

Similar Publications

Aim: Breast cancer (BC) is the most frequently diagnosed malignancy worldwide, necessitating continued research into its molecular mechanisms. Circular RNAs (circRNAs) are increasingly recognized for their role in various cancers, including BC. This study explores the role of circRNA kinesin family member 4A (circKIF4A) in BC progression and its underlying molecular mechanisms.

View Article and Find Full Text PDF

A pan-tumor review of the role of poly(adenosine diphosphate ribose) polymerase inhibitors.

CA Cancer J Clin

January 2025

Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA.

Poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors, such as olaparib, talazoparib, rucaparib, and niraparib, comprise a therapeutic class that targets PARP proteins involved in DNA repair. Cancer cells with homologous recombination repair defects, particularly BRCA alterations, display enhanced sensitivity to these agents because of synthetic lethality induced by PARP inhibitors. These agents have significantly improved survival outcomes across various malignancies, initially gaining regulatory approval in ovarian cancer and subsequently in breast, pancreatic, and prostate cancers in different indications.

View Article and Find Full Text PDF

Background: Papillary Thyroid Carcinoma (PTC) is the most common thyroid cancer, with an etiology and progression that are not fully understood. Research suggests a link between cathepsins and PTC, but the causal nature of this link is unclear. This study uses Mendelian Randomization (MR) to investigate if cathepsins causally influence PTC risk.

View Article and Find Full Text PDF

FDA Approves Inavolisib Combo for PIK3CA-Mutated, HR+ Breast Cancer.

Curr Med Chem

January 2025

Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK.

View Article and Find Full Text PDF

Emerging Combinatorial Drug Delivery Strategies for Breast Cancer: A Comprehensive Review.

Curr Drug Targets

January 2025

Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.) 470003, India.

Breast cancer remains the second most prevalent cancer among women in the United States. Despite advancements in surgical, radiological, and chemotherapeutic techniques, multidrug resistance continues to pose significant challenges in effective treatment. Combination chemotherapy has emerged as a promising approach to address these limitations, allowing multiple drugs to target malignancies via distinct mechanisms of action.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!