A probiotic strain Lactobacillus plantarum PCS26 was used to ferment Jerusalem artichoke juice. Growth kinetics of the bacterial strain was followed during juice fermentation both in flask and in laboratory fermentor. Jerusalem artichoke showed to be an excellent source of nutrients for L. plantarum PCS26 growth. The culture grew very well reaching more than 10(10) cfu/ml in just 12 h. The pH changed from the initial 6.5 to 4.6 at the end of fermentation. The culture hydrolyzed fructooligosaccharides present in the Jerusalem artichoke juice, yielding fructose which was presumably consumed along with the malic acid as energy and carbon source. Lactic acid was the main metabolite produced in concentration of 4.6 g/L. Acetic and succinic acid were also identified. Sensory evaluation of the fermented Jerusalem artichoke juice and its mixtures with blueberry juice showed that the 50/50 % v/v mixture would be very well accepted by the consumers. Above 80 % of the panelists would buy this drink, and over 60 % were willing to pay more for it. Culture survivability in the fermented juices during storage at 4-7 °C was assayed by the Weibullian model. The product shelf-life was extended from 19.70 ± 0.50 days of pure Jerusalem artichoke juice to 35.7 ± 6.4 days of the mixture containing 30 % blueberry juice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4711484 | PMC |
http://dx.doi.org/10.1007/s13197-015-2064-0 | DOI Listing |
Plants (Basel)
December 2024
Instituto de Biotecnología, UEDD INTA CONICET, Buenos Aires 1686, Argentina.
Leaf senescence in plants is the last stage of leaf development and is characterized by a decline in photosynthetic activity, an active degeneration of cellular structures, and the recycling of accumulated nutrients to areas of active growth, such as buds, young leaves, flowers, fruits, and seeds. This process holds economic significance as it can impact yield, influencing the plant's ability to maintain an active photosynthetic system during prolonged periods, especially during the grain filling stage, which affects plant weight and oil content. It can be associated with different stresses or environmental conditions, manifesting itself widely in the context of climate change and limiting yield, especially in crops of agronomic relevance.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa.
L. (Jerusalem artichoke) tubers and aerial parts possess both nutritional and therapeutic properties. The Jerusalem artichoke has been utilized for various applications, including its use as a functional food source, a reservoir of bioactive compounds, and a raw material to produce biofuels.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia.
Plant genomes possess numerous transposable element (TE) insertions that have occurred during evolution. Most TEs are silenced or diverged; therefore, they lose their ability to encode proteins and are transposed in the genome. Knowledge of active plant TEs and TE-encoded proteins essential for transposition and evasion of plant cell transposon silencing mechanisms remains limited.
View Article and Find Full Text PDFJ Econ Entomol
December 2024
Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China.
Insects provide important pollination services for cops. While land use intensification has resulted in steep declines of wild pollinator diversity across agricultural landscapes, releasing managed honeybees has been proposed as a countermeasure. However, it remains uncertain whether managed honeybees can close the pollination gap of sunflower (Helianthus annuus L.
View Article and Find Full Text PDFVirus Res
December 2024
USDA-ARS, Application Technology Research Unit, Wooster, OH, United States. Electronic address:
Diaporthe gulyae and D. helianthi cause Phomopsis stem canker, which is a yield-limiting fungal disease of sunflower (Helianthus annuus L.) in the United States.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!