Background: Rye, Secale cereale L., has historically been a crop of major importance and is still a key cereal in many parts of Europe. Single populations of cultivated rye have been shown to capture a large proportion of the genetic diversity present in the species, but the distribution of genetic diversity in subspecies and across geographical areas is largely unknown. Here we explore the structure of genetic diversity in landrace rye and relate it to that of wild and feral relatives.

Results: A total of 567 SNPs were analysed in 434 individuals from 76 accessions of wild, feral and cultivated rye. Genetic diversity was highest in cultivated rye, slightly lower in feral rye taxa and significantly lower in the wild S. strictum Presl. and S. africanum Stapf. Evaluation of effects from ascertainment bias suggests underestimation of diversity primarily in S. strictum and S. africanum. Levels of ascertainment bias, STRUCTURE and principal component analyses all supported the proposed classification of S. africanum and S. strictum as a separate species from S. cereale. S. afghanicum (Vav.) Roshev, S. ancestrale Zhuk., S. dighoricum (Vav.) Roshev, S. segetale (Zhuk.) Roshev and S. vavilovii Grossh. seemed, in contrast, to share the same gene pool as S. cereale and their genetic clustering was more dependent on geographical origin than taxonomic classification. S. vavilovii was found to be the most likely wild ancestor of cultivated rye. Among cultivated rye landraces from Europe, Asia and North Africa five geographically discrete genetic clusters were identified. These had only limited overlap with major agro-climatic zones. Slash-and-burn rye from the Finnmark area in Scandinavia formed a distinct cluster with little similarity to other landrace ryes. Regional studies of Northern and South-West Europe demonstrate different genetic distribution patterns as a result of varying cultivation intensity.

Conclusions: With the exception of S. strictum and S. africanum different rye taxa share the majority of the genetic variation. Due to the vast sharing of genetic diversity within the S. cereale clade, ascertainment bias seems to be a lesser problem in rye than in predominantly selfing species. By exploiting within accession diversity geographic structure can be shown on a much finer scale than previously reported.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719562PMC
http://dx.doi.org/10.1186/s12870-016-0710-yDOI Listing

Publication Analysis

Top Keywords

genetic diversity
24
cultivated rye
20
ascertainment bias
12
rye
11
genetic
10
distribution genetic
8
diversity
8
wild feral
8
rye taxa
8
strictum africanum
8

Similar Publications

In populations of small effective size (N), such as those in conservation programmes, companion animals or livestock species, inbreeding control is essential. Homozygosity-by-descent (HBD) segments provide relevant information in that context, as they allow accurate estimation of the inbreeding coefficient, provide locus-specific information and their length is informative about the "age" of inbreeding. Our objective was to evaluate tools for predicting HBD in future offspring based on parental genotypes, a problem equivalent to identifying segments identical-by-descent (IBD) among the four parental chromosomes.

View Article and Find Full Text PDF

Antidepressants exhibit a considerable variation in efficacy, and increasing evidence suggests that individual genetics contribute to antidepressant treatment response. Here, we combined data on antidepressant non-response measured using rating scales for depressive symptoms, questionnaires of treatment effect, and data from electronic health records, to increase statistical power to detect genomic loci associated with non-response to antidepressants in a total sample of 135,471 individuals prescribed antidepressants (25,255 non-responders and 110,216 responders). We performed genome-wide association meta-analyses, genetic correlation analyses, leave-one-out polygenic prediction, and bioinformatics analyses for genetically informed drug prioritization.

View Article and Find Full Text PDF

Case-control genome-wide association studies (GWAS) are often used to find associations between genetic variants and diseases. When case-control GWAS are conducted, researchers must make decisions regarding how many cases and how many controls to include in the study. Depending on differing availability and cost of controls and cases, varying case fractions are used in case-control GWAS.

View Article and Find Full Text PDF

Structural variants (SVs) drive gene expression in the human brain and are causative of many neurological conditions. However, most existing genetic studies have been based on short-read sequencing methods, which capture fewer than half of the SVs present in any one individual. Long-read sequencing (LRS) enhances our ability to detect disease-associated and functionally relevant structural variants (SVs); however, its application in large-scale genomic studies has been limited by challenges in sample preparation and high costs.

View Article and Find Full Text PDF

Traditional clustering and visualization approaches in human genetics often operate under frameworks that assume inherent, discrete groupings . These methods can inadvertently simplify multifaceted relationships, functioning to entrench the idea of typological groups . We introduce a network-based pipeline and visualization tool grounded in relational thinking , which constructs networks from a variety of genetic similarity metrics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!