RNA-template dependent de novo telomere addition.

RNA Biol

a Institute of Cell Biology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten , Germany.

Published: August 2016

AI Article Synopsis

  • De novo addition of telomeric sequences occurs at broken chromosomes and is crucial during programmed DNA reorganization, especially in ciliated protozoa during macronuclear differentiation post-sexual reproduction.
  • Small noncoding RNAs play a role in regulating these DNA-reorganization processes, which also require RNA templates from the parental macronucleus for excision and amplification.
  • Research shows that microinjecting RNA templates with modified telomeres into the macronucleus results in altered telomeres, indicating that the addition of new telomeres relies on RNA transcripts containing telomeric repeats from the parent macronucleus.

Article Abstract

De novo addition of telomeric sequences can occur at broken chromosomes and must be well controlled, which is essential during programmed DNA reorganization processes. In ciliated protozoa an extreme form of DNA-reorganization is observed during macronuclear differentiation after sexual reproduction leading to the elimination of specific parts of the germline genome. Regulating these processes involves small noncoding RNAs, but in addition DNA-reordering, excision and amplification require RNA templates deriving from the parental macronucleus. We show that these putative RNA templates can carry telomeric repeats. Microinjection of RNA templates carrying modified telomeres into the developing macronucleus leads to modified telomeres in vegetative cells, providing strong evidence, that de novo addition of telomeres depends on a telomere-containing transcript from the parental macronucleus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4993297PMC
http://dx.doi.org/10.1080/15476286.2015.1134414DOI Listing

Publication Analysis

Top Keywords

rna templates
12
novo addition
8
parental macronucleus
8
modified telomeres
8
rna-template dependent
4
dependent novo
4
novo telomere
4
addition
4
telomere addition
4
addition novo
4

Similar Publications

Biogenesis of human telomerase requires its RNA subunit (hTR) to fold into a multi-domain architecture that includes the template-pseudoknot (t/PK) and the three-way junction (CR4/5). These hTR domains bind the telomerase reverse transcriptase (hTERT) protein and are essential for telomerase activity. Here, we probe hTR structure in living cells using dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) and ensemble deconvolution analysis.

View Article and Find Full Text PDF

The budding yeast Xrn1 protein shuttles between the nucleus, where it stimulates transcription, and the cytoplasm, where it executes the major cytoplasmic mRNA decay. In the cytoplasm, apart from catalyzing 5'→3' decay onto non translated mRNAs, Xrn1 can follow the last translating ribosome to degrade the decapped mRNA template, a process known as "cotranslational mRNA decay". We have previously observed that the import of Xrn1 to the nucleus is required for efficient cytoplasmic mRNA decay.

View Article and Find Full Text PDF

Flipons and the origin of the genetic code.

Biol Lett

January 2025

Discovery, InsideOutBio , Charlestown, MA, USA.

This paper is focused on the origins of the contemporary genetic code. A novel explanation is proposed for how the mapping of nucleotides in DNA to amino acids in proteins arose that derives from repeat nucleotide sequences able to form alternative nucleic acid structures (ANS), such as the unusual left-handed Z-DNA, triplex, G-quadruplex and I-motif conformations. The scheme identifies sequence-specific contacts that map ANS repeats to dipeptide polymers (DPS).

View Article and Find Full Text PDF

Development of BACE2-IN-1/tranylcypromine-based compounds to induce steroidogenesis-dependent neuroprotection.

Biomed Pharmacother

January 2025

Ph.D. Program in Medical Neuroscience, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan; International Master Program in Medical Neuroscience, Taipei Medical University, New Taipei City 23564, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 11031, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80780, Taiwan. Electronic address:

Traumatic brain injury (TBI) constitutes a significant burden on global healthcare systems, especially affecting younger populations, where it is a leading cause of disability and mortality. Current treatments for TBI mainly focus on preventing further brain damage and controlling symptoms. However, despite these approaches, several clinical needs remain unmet.

View Article and Find Full Text PDF

Single-molecule analysis of PARP1-G-quadruplex interaction.

bioRxiv

January 2025

Department of Biochemistry and Molecular Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, 52242, USA.

The human genome contains numerous repetitive nucleotide sequences that display a propensity to fold into non-canonical DNA structures including G-quadruplexes (G4s). G4s have both positive and negative impacts on various aspects of nucleic acid metabolism including DNA replication, DNA repair and RNA transcription. Poly (ADP-ribose) polymerase (PARP1), an important anticancer drug target, has been recently shown to bind a subset of G4s, and to undergo auto-PARylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!