Enzyme catalysis enhanced dark-field imaging as a novel immunohistochemical method.

Nanoscale

State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.

Published: April 2016

Conventional immunohistochemistry is limited to subjective judgment based on human experience and thus it is clinically required to develop a quantitative immunohistochemical detection. 3,3'-Diaminobenzidin (DAB) aggregates, a type of staining product formed by conventional immunohistochemistry, were found to have a special optical property of dark-field imaging for the first time, and the mechanism was explored. On this basis, a novel immunohistochemical method based on dark-field imaging for detecting HER2 overexpressed in breast cancer was established, and the quantitative analysis standard and relevant software for measuring the scattering intensity was developed. In order to achieve a more sensitive detection, the HRP (horseradish peroxidase)-labeled secondary antibodies conjugated gold nanoparticles were constructed as nanoprobes to load more HRP enzymes, resulting in an enhanced DAB deposition as a dark-field label. Simultaneously, gold nanoparticles also act as a synergistically enhanced agent due to their mimicry of enzyme catalysis and dark-field scattering properties.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5nr08232cDOI Listing

Publication Analysis

Top Keywords

dark-field imaging
12
enzyme catalysis
8
novel immunohistochemical
8
immunohistochemical method
8
conventional immunohistochemistry
8
gold nanoparticles
8
dark-field
5
catalysis enhanced
4
enhanced dark-field
4
imaging novel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!