L-type Cav1.3 channels regulate ryanodine receptor-dependent Ca2+ release during sino-atrial node pacemaker activity.

Cardiovasc Res

Département de Physiologie, CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier F-34000, France INSERM, U1191, Montpellier F-34000, France Université de Montpellier, UMR-5203, Montpellier F-34000, France

Published: March 2016

Aims: Sino-atrial node (SAN) automaticity is an essential mechanism of heart rate generation that is still not completely understood. Recent studies highlighted the importance of intracellular Ca(2+) ([Ca(2+)]i) dynamics during SAN pacemaker activity. Nevertheless, the functional role of voltage-dependent L-type Ca(2+) channels in controlling SAN [Ca(2+)]i release is largely unexplored. Since Cav1.3 is the predominant L-type Ca(2+) channel isoform in SAN cells, we studied [Ca(2+)]i dynamics in isolated cells and ex vivo SAN preparations explanted from wild-type (WT) and Cav1.3 knockout (KO) mice (Cav1.3(-/-)).

Methods And Results: We found that Cav1.3 deficiency strongly impaired [Ca(2+)]i dynamics, reducing the frequency of local [Ca(2+)]i release events and preventing their synchronization. This impairment inhibited the generation of Ca(2+) transients and delayed spontaneous activity. We also used action potentials recorded in WT SAN cells as voltage-clamp commands for Cav1.3(-/-) cells. Although these experiments showed abolished Ca(2+) entry through L-type Ca(2+) channels in the diastolic depolarization range of KO SAN cells, their sarcoplasmic reticulum Ca(2+) load remained normal. β-Adrenergic stimulation enhanced pacemaking of both genotypes, though, Cav1.3(-/-) SAN cells remained slower than WT. Conversely, we rescued pacemaker activity in Cav1.3(-/-) SAN cells and intact tissues through caffeine-mediated stimulation of Ca(2+)-induced Ca(2+) release.

Conclusions: Cav1.3 channels play a critical role in the regulation of [Ca(2+)]i dynamics, providing an unanticipated mechanism for triggering local [Ca(2+)]i releases and thereby controlling pacemaker activity. Our study also provides an additional pathophysiological mechanism for congenital SAN dysfunction and heart block linked to Cav1.3 loss of function in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvw006DOI Listing

Publication Analysis

Top Keywords

san cells
20
pacemaker activity
16
[ca2+]i dynamics
16
l-type ca2+
12
san
10
ca2+
9
cav13 channels
8
sino-atrial node
8
ca2+ channels
8
[ca2+]i release
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!