The axoneme genes, their encoded proteins, their functions and the structures they form are largely conserved across species. Much of our knowledge of the function and structure of axoneme proteins in cilia and flagella is derived from studies on model organisms like the green algae, Chlamydomonas reinhardtii. The core structure of cilia and flagella is the axoneme, which in most motile cilia and flagella contains a 9 + 2 configuration of microtubules. The two central microtubules are the scaffold of the central pair complex (CPC). Mutations that disrupt CPC genes in Chlamydomonas and other model organisms result in defects in assembly, stability and function of the axoneme, leading to flagellar motility defects. However, targeted mutations generated in mice in the orthologous CPC genes have revealed significant differences in phenotypes of mutants compared to Chlamydomonas. Here we review observations that support the concept of cell-type specific roles for the CPC genes in mice, and an expanded repertoire of functions for the products of these genes in cilia, including non-motile cilia, and other microtubule-associated cellular functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841256PMC
http://dx.doi.org/10.1002/cm.21271DOI Listing

Publication Analysis

Top Keywords

cilia flagella
12
cpc genes
12
central pair
8
pair complex
8
model organisms
8
genes
5
cilia
5
mammalian axoneme
4
axoneme central
4
complex proteins
4

Similar Publications

Cilia assembly and function rely on the bidirectional transport of components between the cell body and ciliary tip via Intraflagellar Transport (IFT) trains. Anterograde and retrograde IFT trains travel along the B- and A-tubules of microtubule doublets, respectively, ensuring smooth traffic flow. However, the mechanism underlying this segregation remains unclear.

View Article and Find Full Text PDF

CFAP65 is essential for C2a projection integrity in axonemes: implications for organ-specific ciliary dysfunction and infertility.

Cell Mol Life Sci

January 2025

State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.

Defects in motile cilia and flagella lead to motile ciliopathies, including primary ciliary dyskinesia (PCD), which manifests as multi-organ dysfunction such as hydrocephalus, infertility, and respiratory issues. CFAP65 variants are a common cause of male infertility, but its localization and function have remained unclear. In this study, we systematically evaluated CFAP65's role using Cfap65 knockout mice and human patients with CFAP65 variants.

View Article and Find Full Text PDF

TCTEX1D2 is essential for sperm flagellum formation in mice.

Sci Rep

January 2025

Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan.

Flagella and cilia are widely conserved motile structures, in mammalian, sperm possess flagella. Large protein complexes called dynein, including cytoplasmic dynein 2 and axonemal dynein, play a role in the formation of cilia and flagella. The function of each subunit component of dynein complexes in sperm flagellum formation remains unclear.

View Article and Find Full Text PDF

Primary cilia are sensory organelles that regulate various signaling pathways. When microtubules are compared to a highway, motor proteins carry and transport cargo proteins, which are tuned by post-translational modifications, such as acetylation. However, the role of acetylation in primary cilia regulation remains unclear.

View Article and Find Full Text PDF

CRISPR/Cas9-mediated knockout of Tektin 4-like gene (TEKT4L) causes male sterility of Cydia pomonella.

Insect Biochem Mol Biol

January 2025

College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China. Electronic address:

Article Synopsis
  • The sterile insect technique (SIT) is an eco-friendly method used for controlling pest populations, highlighting the importance of identifying genes that regulate insect fertility.
  • Researchers discovered seven TEKT genes in the fruit pest Cydia pomonella, with TEKT4L showing the highest expression in male testes, indicating its key role in reproduction.
  • Using CRISPR/Cas9, they knocked out TEKT4L, inducing male sterility and significantly reducing the hatching rates of offspring, which ultimately proved effective in controlling C.pomonella populations in cage trials.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!