Desipramine targets astrocytes to attenuate synaptic plasticity via modulation of the ephrinA3/EphA4 signalling.

Neuropharmacology

Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany. Electronic address:

Published: June 2016

Long-term potentiation (LTP), a major cellular correlate of memory storage, depends on activation of the ERK/MAPK signalling pathway, but the cell type-specific localization of activated MAPKs remains unknown. We found that in the CA1 field of the hippocampus, shortly after LTP induction, an increase in the number of MAPK-positive cells occurred specifically among astrocytes of the stratum radiatum, suggesting a putative role of astrocytes for LTP. Desipramine (DMI) is an antidepressant which is used to treat major depressive disorder, but also other pathologies such as neuropathic pain or attention-deficit/hyperactivity disorder. Tricyclic antidepressants such as DMI may cause memory impairment as a side effect. However, biological underpinnings of this effect still remain unclear. Here, we show that DMI inhibited the astrocytic MAPK activation and thereby hindered synaptic potentiation. These effects correlated with a reduced neuronal activation in the stratum pyramidale, thereby prompting us to analyse a regulator of LTP located at the astrocyte-neuron interface in the stratum radiatum, namely the ephrinA3/EphA4 signalling pathway. DMI enhanced EphA4 clustering, which favoured an increased ephrinA3-mediated EphA4 phosphorylation and elevated EphA4 forward signalling. The co-administration of DMI with the Src inhibitor SU6656, which blocks EphA4 forward signalling, could partially reverse the LTP attenuation, further supporting the targeting of the ephrinA3/EphA4 pathway by DMI. Thus, our findings suggest a putative novel mechanism for DMI to modulate LTP through the regulation of the ephrinA3/EphA4 signalling pathway. A further exploration of the molecular and behavioral consequences of targeting ephrinA3/EphA4 might help to improve the clinical use of DMI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2016.01.021DOI Listing

Publication Analysis

Top Keywords

ephrina3/epha4 signalling
12
signalling pathway
12
stratum radiatum
8
dmi
8
pathway dmi
8
epha4 forward
8
forward signalling
8
targeting ephrina3/epha4
8
signalling
6
ltp
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!