Purpose To evaluate the normal biodistribution and kinetics of (S)-4-(3-[18F]fluoropropyl)-l-glutamic acid ((18)F FSPG) in healthy volunteers and to compare (18)F FSPG mean and maximum standardized uptake values (SUVmean and SUVmax, respectively) with those of (18)F fluorodeoxyglucose (FDG) across a variety of organs. Materials and Methods This protocol was reviewed and approved by all appropriate regulatory authorities. An 8-mCi (±10%) dose of (18)F FSPG was given to five subjects (three women, two men), and seven whole-body positron emission tomography (PET) scans were performed 5, 10, 20, 30, 45, 150, and 240 minutes after injection. Regions of interest were analyzed on the resultant (18)F FSPG images to evaluate the kinetics of this radiotracer. The images obtained 45 minutes after injection were used to measure SUVmean and SUVmax in additional regions of the body. These values were compared with similar values obtained with (18)F FDG PET published previously. Descriptive statistics, including average and standard deviation across the five subjects, were used. (18)F FSPG SUVmean and SUVmax were compared. Results On the (18)F FSPG images obtained 45 minutes after injection, there was only low-grade background activity in the majority of analyzed regions. Prominent activity was seen throughout the pancreas. Clearance of the radiotracer through the kidneys and collection in the bladder also were seen. SUV quantification shows notable differences between (18)F FSPG and (18)F FDG in the pancreas ((18)F FSPG SUVmean, 8.2; (18)F FDG SUVmean, 1.3), stomach ((18)F FSPG SUVmax, 3.6; (18)F FDG SUVmax, 1.6), and brain ((18)F FSPG SUVmean, 0.08; (18)F FDG SUVmean, 7.8). The kinetic data showed rapid clearance of the radiotracer from the blood pool and most organs, except the pancreas. Conclusion (18)F FSPG is a PET radiopharmaceutical characterized by rapid clearance from most healthy tissues, except the pancreas and kidneys. A consistent biodistribution pattern was observed with low background uptake. The physiologic uptake of this new radiotracer throughout the body is described in more detail, which is important for improved interpretative accuracy and understanding potential clinical applications. (©) RSNA, 2016.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1148/radiol.2015142000 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!