Interactions between DNA and gemini surfactant: impact on gene therapy: part II.

Nanomedicine (Lond)

School of Pharmacy, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada.

Published: February 2016

Nonviral gene delivery, provides distinct treatment modalities for the inherited and acquired diseases, relies upon the encapsulation of a gene of interest, which is then ideally delivered to the target cells. Variations in the chemical structure of gemini surfactants and subsequent physicochemical characteristics of the gemini-based lipoplexes and their impact on efficient gene transfection were assessed in part I, which was published in first March 2016 issue of Nanomedicine (1103). In order to design an efficient vector using gemini surfactants, the interaction of the surfactant with DNA and other components of the delivery system must be characterized, and more critically, well understood. Such studies will help to understand how nonviral transfection complexes, in general, overcome various cellular barriers. The Langmuir-Blodgett monolayer studies, atomic force microscopy, differential scanning calorimetry, isothermal titration calorimetry, small-angle x-ray scattering, are extensively used to evaluate the interaction behavior of gemini surfactants with DNA and other vector components. Part II of this review focuses on the use of these unique techniques to understand their interaction with DNA.

Download full-text PDF

Source
http://dx.doi.org/10.2217/nnm.15.204DOI Listing

Publication Analysis

Top Keywords

gemini surfactants
12
interactions dna
4
gemini
4
dna gemini
4
gemini surfactant
4
surfactant impact
4
gene
4
impact gene
4
gene therapy
4
therapy nonviral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!