Contact Trees: Network Visualization beyond Nodes and Edges.

PLoS One

Department of Computer Science, University of California at Davis, Davis, California, United States of America.

Published: July 2016

Node-Link diagrams make it possible to take a quick glance at how nodes (or actors) in a network are connected by edges (or ties). A conventional network diagram of a "contact tree" maps out a root and branches that represent the structure of nodes and edges, often without further specifying leaves or fruits that would have grown from small branches. By furnishing such a network structure with leaves and fruits, we reveal details about "contacts" in our ContactTrees upon which ties and relationships are constructed. Our elegant design employs a bottom-up approach that resembles a recent attempt to understand subjective well-being by means of a series of emotions. Such a bottom-up approach to social-network studies decomposes each tie into a series of interactions or contacts, which can help deepen our understanding of the complexity embedded in a network structure. Unlike previous network visualizations, ContactTrees highlight how relationships form and change based upon interactions among actors, as well as how relationships and networks vary by contact attributes. Based on a botanical tree metaphor, the design is easy to construct and the resulting tree-like visualization can display many properties at both tie and contact levels, thus recapturing a key ingredient missing from conventional techniques of network visualization. We demonstrate ContactTrees using data sets consisting of up to three waves of 3-month contact diaries over the 2004-2012 period, and discuss how this design can be applied to other types of datasets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4718622PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146368PLOS

Publication Analysis

Top Keywords

network visualization
8
nodes edges
8
leaves fruits
8
network structure
8
bottom-up approach
8
network
7
contact
4
contact trees
4
trees network
4
visualization nodes
4

Similar Publications

Background Orthodontic diagnostic workflows often rely on manual classification and archiving of large volumes of patient images, a process that is both time-consuming and prone to errors such as mislabeling and incomplete documentation. These challenges can compromise treatment accuracy and overall patient care. To address these issues, we propose an artificial intelligence (AI)-driven deep learning framework based on convolutional neural networks (CNNs) to automate the classification and archiving of orthodontic diagnostic images.

View Article and Find Full Text PDF

Objective: Detecting and measuring changes in longitudinal fundus imaging is key to monitoring disease progression in chronic ophthalmic diseases, such as glaucoma and macular degeneration. Clinicians assess changes in disease status by either independently reviewing or manually juxtaposing longitudinally acquired color fundus photos (CFPs). Distinguishing variations in image acquisition due to camera orientation, zoom, and exposure from true disease-related changes can be challenging.

View Article and Find Full Text PDF

Apolipoprotein () genotype and nitric oxide (NO) deficiency are risk factors for age-associated cognitive decline. The oral microbiome plays a critical role in maintaining NO bioavailability during aging. The aim of this study was to assess interactions between the oral microbiome, NO biomarkers, and cognitive function in 60 participants with mild cognitive impairment (MCI) and 60 healthy controls using weighted gene co-occurrence network analysis and to compare the oral microbiomes between carriers and noncarriers in a subgroup of 35 MCI participants.

View Article and Find Full Text PDF

Background: Isolated rapid-eye movement (REM) sleep behavior disorder (iRBD) is characterized by abnormal behaviors in REM sleep and is considered as a prodromal symptom of alpha-synucleinopathies. Resting-state functional magnetic resonance imaging (rsfMRI) studies have unveiled altered functional connectivity (rsFC) in patients with iRBD. However, the associations between intra- and inter-network rsFC with clinical symptoms and neuropsychological functioning in iRBD remain unclear.

View Article and Find Full Text PDF

hERGAT: predicting hERG blockers using graph attention mechanism through atom- and molecule-level interaction analyses.

J Cheminform

January 2025

Department of Intelligent Electronics and Computer Engineering, Chonnam National University, Gwangju, Republic of Korea.

The human ether-a-go-go-related gene (hERG) channel plays a critical role in the electrical activity of the heart, and its blockers can cause serious cardiotoxic effects. Thus, screening for hERG channel blockers is a crucial step in the drug development process. Many in silico models have been developed to predict hERG blockers, which can efficiently save time and resources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!