We consider the problem of capillary imbibition into an axisymmetric tube for which the tube radius decreases in the direction of increasing imbibition. For tubes with constant radius, imbibition is described by Washburn's law (referred to here as the BCLW law to recognize the contributions of Bell, Cameron, and Lucas that predate Washburn). We show that imbibition into tubes with a power-law relationship between the radius and axial position generally occurs more quickly than imbibition into a constant-radius tube. By a suitable choice of the shape exponent, it is possible to decrease the time taken for the liquid to imbibe from one position to another by a factor of 2 compared to the BCLW law. We then show that a further small decrease in the imbibition time may be obtained by using a tube consisting of a cylinder joined to a cone of 3 times the cylinder length. For a given inlet radius, this composite shape attains the minimum imbibition time possible. We confirm our theoretical results with experiments on the tips of micropipettes and discuss the possible significance of these results for the control of liquid motion in microfluidic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.5b04495DOI Listing

Publication Analysis

Top Keywords

capillary imbibition
8
washburn's law
8
imbibition
8
imbibition tubes
8
bclw law
8
imbibition time
8
imbibition converging
4
converging tubes
4
tubes beating
4
beating washburn's
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!