Prevention of deoxynivalenol- and zearalenone-associated oxidative stress does not restore MA-10 Leydig cell functions.

Toxicology

Animal Reproduction Research Center (CRRA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada; Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Québec, Canada. Electronic address:

Published: February 2016

The worldwide contamination of grains designated to human and animal feeding with Fusarium mycotoxins is a significant problem. Among Fusarium mycotoxins, deoxynivalenol (DON) and zearalenone (ZEA) are the most prevalent mycotoxins found in cereals. Co-occurrence of DON and ZEA is also very frequent and indicates that these mycotoxins might be involved in a wide range of synergistic or additive interactions. Both mycotoxins have been linked to various male reproduction problems including downregulation of steroidogenesis. In this study, the impact of DON and ZEA alone or in combination on the viability and steroid production of Leydig cell line MA-10 was determined. The ability of vitamin E, sesamin and their combination to prevent oxidative stress and restore progesterone secretion in DON- and ZEA-exposed cells was also determined. Results showed that MA-10 cells were more sensitive to the effect of DON compared to ZEA. DON and ZEA also significantly reduced MA-10 progesterone secretion after forskolin activation but no significant interactions between DON and ZEA were detected. Preventive treatment with the combination of vitamin E and sesamin significantly reduced ROS production and increased cell survival after exposition to DON and ZEA. However this treatment failed to restore normal progesterone secretion. In conclusion, both DON and ZEA are deleterious to steroidogenesis in Leydig cells. Prevention of oxidative stress caused by DON and ZEA was effective to restore cell viability but failed to restore other functions of Leydig cells suggesting that ROS production is not the main cause of steroidogenic failure in DON and ZEA treated MA-10 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2016.01.003DOI Listing

Publication Analysis

Top Keywords

don zea
32
oxidative stress
12
progesterone secretion
12
don
10
zea
10
stress restore
8
leydig cell
8
fusarium mycotoxins
8
vitamin sesamin
8
ma-10 cells
8

Similar Publications

Mycotoxins are toxins produced by various types of fungi, including , which can produce different types of mycotoxins, such as Deoxynivalenol (DON), Zearalenone, T-2 toxin, and Fumonisins (FUM). Mycotoxins have the potential to reduce the quality of crops and pose health risks to both humans and animals. This can result in reduced animal production and substantial economic consequences on a global scale.

View Article and Find Full Text PDF

Deoxynivalenol (DON) contamination in cereals is a widespread issue with global implications, necessitating the development of efficient detection methods. Here, a fluorescent aptasensor integrating target-responsive DNA three-way junction (TWJ) and DNA walking machine was developed to detect DON. The DON-specific aptamer (Apt) and the walker (Walker DNA) are integrated into TWJs.

View Article and Find Full Text PDF

Maize-Fusarium associations and their mycotoxins: Insights from South Africa.

Fungal Biol

December 2024

Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.

For maize, a staple food in South Africa, there is a lack of comprehensive knowledge on the mycotoxin-producing fungal diversity. In this study, a fungal community profile was established using culture-dependent methods for 56 maize seed samples that were also analysed for 13 mycotoxins. The fungal isolates were identified by morphology and DNA sequencing.

View Article and Find Full Text PDF

Corn-based breakfast cereals, known as cornflakes, have become a common breakfast choice worldwide, recognized for their convenience and versatility. However, mycotoxins can contaminate these products, adversely affecting human health. This study assessed the occurrence of major mycotoxins (AFB1, OTA, DON, ZEA, and FUM) in cornflake stock-keeping units (SKUs) marketed in the United Arab Emirates (UAE).

View Article and Find Full Text PDF
Article Synopsis
  • Fusarium mycotoxins, including Fusaric acid (FA) and others, are prevalent global contaminants that pose serious health risks.
  • CRISPR screening identified Malate dehydrogenase 2 (MDH2) and Pyruvate dehydrogenase E1 subunit beta (PDHB) as critical genes related to FA-induced cell death, particularly through their involvement in mitochondrial functions.
  • MDH2 was found to play a vital role in regulating the toxicity of various Fusarium toxins, suggesting potential targets for treatment strategies against their harmful effects.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!