Selective sensing of submicromolar iron(III) with 3,3',5,5'-tetramethylbenzidine as a chromogenic probe.

Spectrochim Acta A Mol Biomol Spectrosc

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China. Electronic address:

Published: April 2016

The development of highly selective and sensitive method for iron(III) detection is of great importance both from human health as well as environmental point of view. We herein reported a simple, selective and sensitive colorimetric method for the detection of Fe(III) at submicromolar level with 3,3,'5,5'-tetramethylbenzidine (TMB) as a chromogenic probe. It was observed that Fe(III) could directly oxidize TMB to form a blue solution without adding any extra oxidants. The reaction has a stoichiometric ratio of 1:1 (Fe(III)/TMB) as determined by a molar ratio method. The resultant color change can be perceived by the naked eye or monitored the absorbance change at 652 nm. The method allowed the measurement of Fe(III) in the range 1.0×10(-7)-1.5×10(-4) mol L(-1) with a detection limit of 5.5×10(-8) mol L(-1). The relative standard deviation was 0.9% for eleven replicate measurements of 2.5×10(-5) mol L(-1) Fe(III) solution. The chemistry showed high selectivity for Fe(III) in contrast to other common cation ions. The practically of the method was evaluated by the determination of Fe in milk samples; good consistency was obtained between the results of this method and atomic absorption spectrophotometry as indicated by statistical analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2016.01.012DOI Listing

Publication Analysis

Top Keywords

mol l-1
12
chromogenic probe
8
selective sensitive
8
method
6
feiii
5
selective sensing
4
sensing submicromolar
4
submicromolar ironiii
4
ironiii 33'55'-tetramethylbenzidine
4
33'55'-tetramethylbenzidine chromogenic
4

Similar Publications

Cathodic corrosion is an electrochemical phenomenon that etches metals at moderately negative potentials. Although cathodic corrosion probably occurs by forming a metal-containing anion, such intermediate species have not yet been observed. Here, aiming to resolve this long-standing debate, our work provides such evidence through X-ray absorption spectroscopy.

View Article and Find Full Text PDF

Alginate films were prepared from the brown seaweed Dictyota mertensii using glycerol as a plasticizer. The effects of extraction conditions-time, temperature, and NaCO concentration-on the optical, barrier, and mechanical properties of the films were investigated using a central composite design (CCD). ANOVA and F tests confirmed the models' statistical significance at p ≤ 0.

View Article and Find Full Text PDF

Background: Immobilized enzyme possessing both high activity and good selectivity is important in practice. In this study, Candida antarctica lipase B (CALB) was immobilized onto the macroporous resin ADS-17 for triacylglycerol (TAG) synthesis through esterification of oleic acid and glycerol. The reaction conditions were optimized by single-factor study and orthogonal test, and the reusability of the immobilized CALB (CALB@ADS-17) was evaluated.

View Article and Find Full Text PDF

This work presents an optimization of the construction, treatment, and activation of 3D-printed electrochemical sensors (E-3D). For this, was used a 2-full factorial design examining three key variables at two levels: electrode height, electrode diameter, and printing speed. Moreover, it evaluates various physical, chemical, and electrochemical methods to treat and activate the E-3D surface.

View Article and Find Full Text PDF

Novel green synthesis of Al-Fe₃O₄ nanocomposite for magnetic d-μSPE of Cd(II) from water and food samples.

Food Chem

January 2025

Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Turkey; Technology Research and Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Turkey; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey. Electronic address:

A novel and green nanocomposite (Al-Fe₃O₄) was synthesized and used for the magnetic d-μSPE method for separating and enriching Cd(II) from dried fruit samples. Aluminum foil waste and banana peels were used as the precursors. The green nanocomposite was characterized using FTIR, XRD, and FE-SEM techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!