Neutrophil leukocytes protect against a varied and complex array of microbes by providing microbicidal action that is simple, potent, and focused. Neutrophils provide such action via redox reactions that change the frontier orbitals of oxygen (O2) facilitating combustion. The spin conservation rules define the symmetry barrier that prevents direct reaction of diradical O2 with nonradical molecules, explaining why combustion is not spontaneous. In burning, the spin barrier is overcome when energy causes homolytic bond cleavage producing radicals capable of reacting with diradical O2 to yield oxygenated radical products that further participate in reactive propagation. Neutrophil mediated combustion is by a different pathway. Changing the spin quantum state of O2 removes the symmetry restriction to reaction. Electronically excited singlet molecular oxygen ((1)O2(*)) is a potent electrophilic reactant with a finite lifetime that restricts its radius of reactivity and focuses combustive action on the target microbe. The resulting exergonic dioxygenation reactions produce electronically excited carbonyls that relax by light emission, that is, chemiluminescence. This overview of neutrophil combustive microbicidal action takes the perspectives of spin conservation and bosonic-fermionic frontier orbital considerations. The necessary principles of particle physics and quantum mechanics are developed and integrated into a fundamental explanation of neutrophil microbicidal metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4691466 | PMC |
http://dx.doi.org/10.1155/2015/794072 | DOI Listing |
West Afr J Med
September 2024
Medical Microbiology & Parasitology Department, University of Ilorin, Ilorin, Nigeria. Email:
Background: Neonatal sepsis (NNS) is a known cause of morbidity and mortality especially in developing countries. The global resistance scourge may worsen the management outcomes of NNS. This study aims to determine the current profile of bacteriological agents of NNS, their resistance status and associated mortality in our setting.
View Article and Find Full Text PDFViruses
January 2025
Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
The tripartite-motif protein 56 (TRIM56) is a RING-type E3 ubiquitin ligase whose functions were recently beginning to be unveiled. While the physiological role(s) of TRIM56 remains unclear, emerging evidence suggests this protein participates in host innate defense mechanisms that guard against viral infections. Interestingly, TRIM56 has been shown to pose a barrier to viruses of distinct families by utilizing its different domains.
View Article and Find Full Text PDFViruses
December 2024
Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
Treatment options for viral infections are limited and viruses have proven adept at evolving resistance to many existing therapies, highlighting a significant vulnerability in our defenses. In response to this challenge, we explored the modulation of cellular RNA metabolic processes as an alternative paradigm to antiviral development. Previously, the small molecule 5342191 was identified as a potent inhibitor of HIV-1 replication by altering viral RNA accumulation at doses that minimally affect host gene expression.
View Article and Find Full Text PDFViruses
December 2024
School of Medicine, Tzuchi University, Hualien 970, Taiwan.
Background: Psoriasis patients who are seropositive for hepatitis B surface antigen (HBsAg) or hepatitis B core antibody (HBcAb) face an elevated risk of hepatitis B virus reactivation (HBVr) when treated with cytokine inhibitors. This study aims to elucidate the risk in this population.
Methods: A retrospective chart review was conducted to assess the risk of HBVr in 73 psoriasis patients treated with cytokine inhibitors from 2013 to 2023.
Molecules
January 2025
Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia.
In recent years, a number of synthetic potentiators of antibiotics have been discovered. Their action can significantly enhance the antibacterial effect and limit the spread of antibiotic resistance through inhibition of bacterial cystathionine-γ-lyase. To expand the known set of potentiators, we developed methods for the synthesis of five new representatives of 6-bromoindole derivatives-potential inhibitors of bacterial cystathionine-γ-lyase-namely potassium 3-amino-5-((6-bromoindolyl)methyl)thiophene-2-carboxylate () and its 6-bromoindazole analogs ( and ), along with two 6-broindazole analogs of the parent compound .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!