Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Interleukin (IL)-36R signalling plays a proinflammatory role in different organs including the skin, but the expression of IL-36R ligands and their molecular function in intestinal inflammation are largely unknown.
Design: We studied the characteristics of IL-36R ligand expression in IBDs and experimental colitis. The functional role of IL-36R signalling in the intestine was addressed in experimental colitis and wound healing models in vivo by using mice with defective IL-36R signalling (-/-) or Myd88, neutralising anti-IL-36R antibodies, recombinant IL-36R ligands and RNA-seq genome expression analysis.
Results: Expression of IL-36α and IL-36γ was significantly elevated in active human IBD and experimental colitis. While IL-36γ was predominantly detected in nuclei of the intestinal epithelium, IL-36α was mainly found in the cytoplasm of CD14 inflammatory macrophages. Functional studies showed that defective IL-36R signalling causes high susceptibility to acute dextran sodium sulfate colitis and impairs wound healing. Mechanistically, IL-36R ligands released upon mucosal damage activated IL-36R colonic fibroblasts via Myd88 thereby inducing expression of chemokines, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-6. Moreover, they induced proliferation of intestinal epithelial cells (IECs) and expression of the antimicrobial protein lipocalin 2. Finally, treatment of experimental intestinal wounds with IL-36R ligands significantly accelerated mucosal healing in vivo.
Conclusions: IL-36R signalling is activated upon intestinal damage, stimulates IECs and fibroblasts and drives mucosal healing. Modulation of the IL-36R pathway emerges as a potential therapeutic strategy for induction of mucosal healing in IBD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/gutjnl-2015-310374 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!