The study of intraindividual variability pervades empirical inquiry in virtually all subdisciplines of psychology. The statistical analysis of multivariate time-series data - a central product of intraindividual investigations -requires special modeling techniques. The dynamic factor model (DFM), which is a generalization of the traditional common factor model, has been proposed by Molenaar (1985) for systematically extracting information from multivariate time- series via latent variable modeling. Implementation of the DFM model has taken several forms, one of which involves specifying it as a covariance-structure model and estimating its parameters from a block-Toeplitz matrix derived from the multivariate time-ser~es. We compare two methods for estimating DFM parameters within a covariance-structure framework - pseudo-Maximum Likelihood (p-ML) and Asymptotically Distribution Free (ADF) estimation - by means of a Monte Carlo simulation. Both methods appear to give consistent model parameter estimates of comparable precision, but only the ADF method gives standard errors and chi-square statistics that appear to be consistent. The relative ordering of the values of all estimates appears to be very similar across methods. When the manifest time-series is relatively short, the two methods appear to perform about equally well.

Download full-text PDF

Source
http://dx.doi.org/10.1207/s15327906mbr3303_1DOI Listing

Publication Analysis

Top Keywords

pseudo-maximum likelihood
8
dynamic factor
8
multivariate time-series
8
factor model
8
methods appear
8
appear consistent
8
model
5
comparison pseudo-maximum
4
likelihood asymptotically
4
asymptotically distribution-free
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!