Validation of a New Semi-Automated Technique to Evaluate Muscle Capillarization.

Adv Exp Med Biol

School of Healthcare Science Cognitive Motor Function Research Group, Manchester Metropolitan University, Manchester, UK.

Published: May 2016

The method of capillary domains has often been used to study capillarization of skeletal and heart muscle. However, the conventional data processing method using a digitizing tablet is an arduous and time-consuming task. Here we compare a new semi-automated capillary domain data collection and analysis in muscle tissue with the standard capillary domain method. The capillary density (1481±59 vs. 1447±54 caps mm(-2); R2:0.99; P<0.01) and heterogeneity of capillary spacing (0.085±0.002 vs. 0.085±0.002; R2:0.95; P<0.01) were similar in both methods. The fiber cross-sectional area correlated well between the methods (R2:0.84; P<0.01) and did not differ significantly (~8% larger in the old than new method at P=0.08). The latter was likely due to differences in outlining the contours between the two methods. In conclusion, the semi-automated method gives quantitatively and qualitatively similar data as the conventional method and saves a considerable amount of time.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-3023-4_11DOI Listing

Publication Analysis

Top Keywords

method capillary
8
capillary domain
8
validation semi-automated
4
semi-automated technique
4
technique evaluate
4
evaluate muscle
4
muscle capillarization
4
capillarization method
4
capillary
4
capillary domains
4

Similar Publications

In this study, experiments were conducted on soil samples collected from depths of 0-15 cm, 15-30 cm, and 30-50 cm at the National Long-term Scientific Research Base for the Comprehensive Management of Rocky Desertification in the Wuling Mountains. The aim was to determine the physicochemical indexes and explore the nature and spatial heterogeneity of the soil of the planted mixed forests within the rocky desertification area of the Wuling Mountain. Various analytical methods were employed, including descriptive statistical analysis, correlation analysis, analysis of variance, principal component analysis, spatial interpolation analysis, and kriging interpolation, to fit the optimal model of the semi-variance function of soil physicochemical properties and analyze the model's parameters.

View Article and Find Full Text PDF

Comparison of genotyping assays for detection of targeted CRISPR/Cas mutagenesis in highly polyploid sugarcane.

Front Genome Ed

December 2024

Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS-Institute of Food and Agricultural Science, Gainesville, FL, United States.

Sugarcane ( spp.) is an important biofuel feedstock and a leading source of global table sugar. hybrid cultivars are highly polyploid (2n = 100-130), containing large numbers of functionally redundant hom(e)ologs in their genomes.

View Article and Find Full Text PDF

Aims/introduction: Fatty acid-binding protein (FABP) 4, which acts as an adipokine secreted by adipocytes, macrophages, and capillary endothelial cells, is expressed in injured glomerular cells. It has been reported that urinary (U-) FABP4 is associated with renal dysfunction and proteinuria in several glomerular kidney diseases. However, the clinical significance of U-FABP4 in diabetic kidney disease (DKD) remains undetermined.

View Article and Find Full Text PDF

Background: There is growing interest in the use of capillary blood sampling (CBS) for testing biochemical analytes owing to the advantages it offers including home surveillance of chronic conditions. In this study, we aimed to determine whether the use of CBS was a viable and feasible method for testing total prostate-specific antigen (TPSA) concentrations in men with prostate disease.

Methods: Men with known prostate disease were recruited from a urology clinic where they were being treated or followed up.

View Article and Find Full Text PDF

Ambient mass spectrometry imaging (MSI) enables hundreds of analytes in tissue sections to be directly mapped at atmospheric pressure with minimal sample preparation. This field is currently experiencing rapid growth, with numerous reported ambient ionization techniques resulting in a "hundred flowers bloom" situation. Nanospray desorption electrospray ionization (nano-DESI), developed by the Laskin group in 2010, is a widely used liquid-extraction-based ambient ionization technique that was first used for mass spectrometry imaging of tissue in 2012.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!