De novo exonic mutation in MYH7 gene leading to exon skipping in a patient with early onset muscular weakness and fiber-type disproportion.

Neuromuscul Disord

Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia; Institute of Biomedicine and Translational Medicine, Department of Biomedicine, University of Tartu, Tartu, Estonia; Department of Pediatrics, University of Tartu, Tartu, Estonia.

Published: March 2016

Here we report on a case of MYH7-related myopathy in a boy with early onset of muscular weakness and delayed motor development in infancy. His most affected muscles were neck extensors showing a dropped head sign, proximal muscles of lower limbs with positive Gower's sign, and trunk muscles. Brain and spinal cord MRI scans, echocardiography, and laboratory analyses including creatine kinase and lactate did not reveal any abnormalities. Muscle histopathology showed fiber-type disproportion. Whole exome sequencing of the parents-offspring trio revealed a novel de novo c.5655G>A p.(Ala1885=) synonymous substitution of the last nucleotide in exon 38 of the MYH7 gene. Further RNA investigations proved the skipping of exon 38 (p.1854_1885del). This is a first report of an exon-skipping mutation in the MYH7 gene causing myopathy. This report broadens both the phenotypic and genotypic spectra of MYH7-related myopathies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nmd.2015.11.011DOI Listing

Publication Analysis

Top Keywords

myh7 gene
12
mutation myh7
8
early onset
8
onset muscular
8
muscular weakness
8
fiber-type disproportion
8
novo exonic
4
exonic mutation
4
gene leading
4
leading exon
4

Similar Publications

This study aimed to elucidate the impact of advanced glycation end products (AGEs) and glucose shock on cardiomyocyte viability, gene expression, cardiac biomarkers, and cardiac contractility. Firstly, AGEs were generated in-house, and their concentration was confirmed using absorbance measurements. AC16 cardiomyocytes were then exposed to varying doses of AGEs, resulting in dose-dependent decreases in cell viability.

View Article and Find Full Text PDF

Haplotyping-based preimplantation genetic testing for inherited cardiovascular disease: a multidisciplinary approach.

Mol Genet Genomics

December 2024

Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China.

Given the high morbidity, mortality, and hereditary risk of cardiovascular diseases (CVDs), their prevention and control have garnered widespread attention and remain central to clinical research. This study aims to assess the feasibility and necessity of haplotyping-based preimplantation genetic testing for the prevention of inherited CVD. A total of 15 preimplantation genetic testing for monogenic defect (PGT-M) cycles were performed in 12 CVD families from January 2016 to July 2022.

View Article and Find Full Text PDF

Muscle atrophy, an age-related condition, presents a growing healthcare concern within the context of global population aging. While studies have investigated for its potential antifatigue properties, reports on its active components remain limited. This study evaluated the efficacy of mycelium extract on muscle health, utilizing a 1:1 water-ethanol preparation administered to C57BL/6 mice exhibiting acute hind leg atrophy.

View Article and Find Full Text PDF

Randomized clinical trials (RCTs) for hypertrophic cardiomyopathy (HCM) have long been challenging caused by the condition's rarity, low event rates, and diverse clinical presentations. However, recent advances in targeted therapies have sparked increased interest in HCM research. Despite this, designing effective RCTs remains complex, particularly in identifying clinically meaningful endpoints.

View Article and Find Full Text PDF

Three Novel Pathogenic Variants in Unrelated Vietnamese Patients with Cardiomyopathy.

Diagnostics (Basel)

November 2024

Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam.

: Cardiomyopathy, including dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), is a major cause of heart failure (HF) and a leading indication for heart transplantation. Of these patients, 20-50% have a genetic cause, so understanding the genetic basis of cardiomyopathy will provide knowledge about the pathogenesis of the disease for diagnosis, treatment, prevention, and genetic counseling for families. : This study collected nine patients from different Vietnamese families for genetic analysis at The Cardiovascular Center, E Hospital, Hanoi, Vietnam.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!