Lantibiotics are gene-encoded antimicrobial peptides that are distinguished by the presence of the unusual structures, lanthionine and β-methyllanthionine, which are introduced through enzyme-catalysed post-translational modification. Lantibiotics can be subdivided on the basis of the nature of the enzyme(s) which catalyse this reaction. Lantibiotic synthetases, generically designated LanM, which catalyse the dehydration of serines (and threonines) followed by the formation lanthionine (and β-methyllanthioine), are responsible for the synthesis of the largest subdivision, type 2. One can take advantage of the conserved nature of LanM proteins to screen for and bioinformatically characterize novel lantibiotic-encoding operons in genome-sequenced microorganisms. Having employed this strategy with success previously, here we update the investigation to reveal the existence of 124 LanM homologs encoded within genome-sequenced microbes. Further analysis focussed specifically on 9 novel lantibiotic gene clusters in Anaerocellum thermophilum DSM 6725, Anaerococcus tetradius ATCC 35098, Corynebacterium matruchotti ATCC 33806, Streptococcus suis 98HAH33, Geobacillus sp. G11MC16, Nostoc punctiforme PCC 73102 (× 2; one on plasmid and one on the chromosome) and Streptococcus pneumoniae CDC 0288-04 and TIGR4. Furthermore, screening of metagenomic datasets revealed 11 additional LanM-encoding genes from a variety of environments. The alignment of these LanM proteins facilitated a detailed investigation of conserved domains and led to the design of an improved set of degenerate primers which can be employed in the laboratory to identify strains containing type 2 lantibiotic gene clusters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12602-011-9062-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!