Unlabelled: Mutations in SEPN1 cause selenoprotein N (SEPN)-related myopathy (SEPN-RM) characterized by early-onset axial and neck weakness, spinal rigidity, respiratory failure and histopathological features, ranging from mild dystrophic signs to a congenital myopathy pattern with myofibrillar disorganization. We report on clinical and instrumental features in three patients affected with a congenital myopathy characterized by prevalent neck weakness starting at different ages and mild myopathy, in whom we performed diagnosis of SEPN-RM. The patients presented myopathic signs since their first years of life, but the disease remained unrecognized because of a relatively benign myopathic course. In two cases, myopathic features were stable after 2 years of follow-up, but respiratory involvement worsened. The muscle MRI and muscle biopsy showed a typical pattern of SEPN-RM. Molecular diagnosis revealed two novel homozygous mutations in SEPN1, c.1176delA and c.726_727InsTCC.

Conclusion: This report underlines the clinical diagnostic clues of early neck and axial weakness to suspect a SEPN-RM and the usefulness of muscle MRI in conjunction with clinical features to achieve the diagnosis. Our data confirm the slow progression of respiratory involvement in spite of the relatively stable course of myopathy. We report two previously undescribed mutations in SEPN1.

What Is Known: • Mutations in SEPN1 cause myopathy characterized by early-onset axial and neck weakness spinal rigidity and respiratory failure. • SEPN-related myopathies have been initially associated with four distinct histopathological entities that however appear more mixed in recently described cases. What is New: • SEPN-related myopathies can remain unrecognized because of the normal early motor development and relatively benign myopathic course of the disease. • Our study adds two novel homozygous mutations to the number of reported pathogenic SEPN1 variants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00431-015-2685-3DOI Listing

Publication Analysis

Top Keywords

mutations sepn1
12
neck weakness
12
three patients
8
diagnostic clues
8
characterized early-onset
8
early-onset axial
8
axial neck
8
weakness spinal
8
spinal rigidity
8
rigidity respiratory
8

Similar Publications

ER stress as a sentinel mechanism for ER Ca homeostasis.

Cell Calcium

December 2024

Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada. Electronic address:

Endoplasmic reticulum (ER) stress is triggered upon the interference with oxidative protein folding that aims to produce fully folded, disulfide-bonded and glycosylated proteins, which are then competent to exit the ER. Many of the enzymes catalyzing this process require the binding of Ca ions, including the chaperones BiP/GRP78, calnexin and calreticulin. The induction of ER stress with a variety of drugs interferes with chaperone Ca binding, increases cytosolic Cathrough the opening of ER Ca channels, and activates store-operated Ca entry (SOCE).

View Article and Find Full Text PDF

Congenital Muscular Dystrophies (CMD) are phenotypically and genotypically heterogenous disorders with a prevalence of 0.68 to 2.5/100,000, contributing to significant morbidity and mortality.

View Article and Find Full Text PDF

Cardiac involvement in two rare neuromuscular diseases: LAMA2-related muscular dystrophy and SELENON-related myopathy.

Neuromuscul Disord

August 2022

Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, the Netherlands. Electronic address:

LAMA2-related muscular dystrophy (LAMA2-MD) and SELENON(SEPN1)-related myopathy (SELENON-RM) are rare neuromuscular diseases caused by mutations in the LAMA2 and SELENON (SEPN1) gene, respectively. Systematic reviews on cardiac features in both neuromuscular diseases are lacking. This scoping review aims to elucidate the cardiac involvement in LAMA2-MD or SELENON-RM.

View Article and Find Full Text PDF

Background: Aberrations to endoplasmic/sarcoplasmic reticulum (ER/SR) calcium concentration can result in the departure of endogenous proteins in a phenomenon termed exodosis. Redistribution of the ER/SR proteome can have deleterious effects to cell function and cell viability, often contributing to disease pathogenesis. Many proteins prone to exodosis reside in the ER/SR via an ER retention/retrieval sequence (ERS) and are involved in protein folding, protein modification, and protein trafficking.

View Article and Find Full Text PDF

Congenital muscular dystrophy with early rigid spine, also known as the rigid spine with muscular dystrophy type 1 (RSMD1), is caused by mutation. We investigated the clinical manifestations, pathological features, and genetic characteristics of 8 Chinese RSMD1 patients in order to improve diagnosis and management of the disease. Eight patients presented with delayed motor development, muscle weakness, hypotonia, and a myopathic face with high palatine arches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!