Mesoporous silica nanoparticle-supported lipid bilayers, termed 'protocells,' represent a potentially transformative class of therapeutic and theranostic delivery vehicle. The field of targeted drug delivery poses considerable challenges that cannot be addressed with a single 'magic bullet'. Consequently, the protocell has been designed as a modular platform composed of interchangeable biocompatible components. The mesoporous silica core has variable size and shape to direct biodistribution and a controlled pore size and surface chemistry to accommodate diverse cargo. The encapsulating supported lipid bilayer can be modified with targeting and trafficking ligands as well as polyethylene glycol (PEG) to effect selective binding, endosomal escape of cargo, drug efflux prevention, and potent therapeutic delivery, while maintaining in vivo colloidal stability. This review describes the individual components of the platform, including the mesoporous silica nanoparticle core and supported lipid bilayer, their assembly (by multiple techniques) into a protocell, and the combined, often synergistic, performance of the protocell based on in vitro and in vivo studies, including the assessment of biocompatibility and toxicity. In closing, the many emerging variations of the protocell theme and the future directions for protocell research are commented on.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964272 | PMC |
http://dx.doi.org/10.1002/smll.201502119 | DOI Listing |
ACS Appl Nano Mater
May 2022
Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.
The advancement of safe nanomaterials for use as optical coherence tomography (OCT) imaging and stem cell-labeling agents to longitudinally visually track therapeutic derived retinal stem cells to study their migration, survival rate, and efficacy is challenged by instability, intracellular aggregation, low uptake, and cytotoxicity. Here, we describe a series of hybrid lipid-coated gold nanorods (AuNRs) that could solve these issues. These nanomaterials were made via a layer-by-layer assembly approach, and their stability in biological media, mechanism, efficiency of uptake, and toxicity were compared with a commercially available set of AuNRs with a 5 nm mesoporous silica (mSiO)-polymer coating.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China.
Research on stimuli-responsive micro-nanocontainers has gained attention for targeted corrosion inhibition and controlled emulsification-demulsification in oil recovery. However, existing nanocontainers face issues like irreversible drug release and limited functionality. This study presents a multi-functional nanocontainer design with reversible drug release and emulsification-demulsification capabilities.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India.
Lung cancer continues to be the leading cause of mortality globally. Nanotechnology-mediated targeted drug delivery approach is one of the promising strategies for the treatment of lung cancer. Due to their multifactorial role, mesoporous silica nanoparticles (MSNs), have attracted a lot of attention for drug delivery.
View Article and Find Full Text PDFACS Nano
January 2025
School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
Intracellular bacteria can evade the attack of the immune system and the bactericidal effects of most antibiotics due to the protective effect of the host cells. Herein, inspired by the stimuli-responsive behaviors of biological ion channels, a kind of synergistic cascade potassium ion (K)-responsive nanoparticles gated with K-responsive polymers is ingeniously designed to target intracellular bacteria and then control drug release. Due to the cooperative interaction of host-guest complexation and conformational transition of K-responsive polymers, the grafted gates based on these polymers could recognize high K concentration to reverse the negatively charged nanoparticles into positively charged ones for targeting bacteria and subsequently inducing a switch from the hydrophobic shrinking "off" state to the hydrophilic stretching "on" state for drug release.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia.
Medicinal plants are increasingly being explored due to their possible pharmacological properties and minimal adverse effects. However, low bioavailability and stability often limit efficacy, necessitating high oral doses to achieve therapeutic levels in the bloodstream. Mesoporous silica nanoparticles (MSNs) offer a potential solution to these limitations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!