Position-dependent plasticity of distinct progenitor types in the primitive streak.

Elife

MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.

Published: January 2016

The rostrocaudal (head-to-tail) axis is supplied by populations of progenitors at the caudal end of the embryo. Despite recent advances characterising one of these populations, the neuromesodermal progenitors, their nature and relationship to other populations remains unclear. Here we show that neuromesodermal progenitors are a single Sox2(low)T(low) entity whose choice of neural or mesodermal fate is dictated by their position in the progenitor region. The choice of mesoderm fate is Wnt/β-catenin dependent. Wnt/β-catenin signalling is also required for a previously unrecognised phase of progenitor expansion during mid-trunk formation. Lateral/ventral mesoderm progenitors represent a distinct committed state that is unable to differentiate to neural fates, even upon overexpression of the neural transcription factor Sox2. They do not require Wnt/β-catenin signalling for mesoderm differentiation. This information aids the correct interpretation of in vivo genetic studies and the development of in vitro protocols for generating physiologically-relevant cell populations of clinical interest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4798969PMC
http://dx.doi.org/10.7554/eLife.10042DOI Listing

Publication Analysis

Top Keywords

neuromesodermal progenitors
8
wnt/β-catenin signalling
8
position-dependent plasticity
4
plasticity distinct
4
distinct progenitor
4
progenitor types
4
types primitive
4
primitive streak
4
streak rostrocaudal
4
rostrocaudal head-to-tail
4

Similar Publications

Early embryos display a remarkable ability to regulate tissue patterning in response to changes in tissue size. However, it is not clear whether this ability continues into post-gastrulation stages. Here, we performed targeted removal of dorsal progenitors in the zebrafish tailbud using multiphoton ablation.

View Article and Find Full Text PDF

Dual-nuclease single-cell lineage tracing by Cas9 and Cas12a.

Cell Rep

December 2024

Center for Cell Lineage Technology and Engineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China. Electronic address:

Single-cell lineage tracing based on CRISPR-Cas9 gene editing enables the simultaneous linkage of cell states and lineage history at a high resolution. Despite its immense potential in resolving the cell fate determination and genealogy within an organism, existing implementations of this technology suffer from limitations in recording capabilities and considerable barcode dropout. Here, we introduce DuTracer, a versatile tool that utilizes two orthogonal gene editing systems to record cell lineage history at single-cell resolution in an inducible manner.

View Article and Find Full Text PDF
Article Synopsis
  • The processes of primary and secondary neurulation, which lead to spinal cord formation, are not fully understood in humans due to difficulties accessing embryos at the relevant stages (3-7 weeks post-conception).
  • Analysis of 108 human embryos reveals that while primary neurulation is similar to that in mice, it has distinct differences; secondary neurulation begins later and forms a single lumen, unlike the multiple lumens seen in chicks.
  • Key differences in neurulation timing between humans and mice were noted, such as the rate of somite formation and the termination of axial elongation associated with apoptosis in the embryonic tailbud; these findings can aid current research on neurulation using stem cell-derived organoids
View Article and Find Full Text PDF

Many aspects of neurodegenerative disease pathology remain unresolved. Why do certain neuronal subpopulations acquire vulnerability to stress or mutations in ubiquitously expressed genes, while others remain resilient? Do these neurons harbor intrinsic marks that make them prone to degeneration? Do these diseases have a neurodevelopmental component? Lacking this fundamental knowledge hampers the discovery of efficacious treatments. While it is well established that human organoids enable the modeling of brain-related diseases, we still lack an organoid model that recapitulates the regionalization complexity and physiology of the spinal cord.

View Article and Find Full Text PDF

Generation of self-renewing neuromesodermal progenitors with neuronal and skeletal muscle bipotential from human embryonic stem cells.

Cell Rep Methods

November 2024

Department of Cell Biology, Naval Medical University, 200433 Shanghai, China; Shanghai Key Laboratory of Cell Engineering, Naval Medical University, 200433 Shanghai, China. Electronic address:

Progress has been made in generating spinal cord and trunk derivatives from neuromesodermal progenitors (NMPs). However, maintaining the self-renewal of NMPs in vitro remains a challenge. In this study, we developed a cocktail of small molecules and growth factors that induces human embryonic stem cells to produce self-renewing NMPs (srNMPs) under chemically defined conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!