Donnan dialysis has been applied to forty filtered drainage waters collected from five coastal lowland acid sulfate soil (CLASS) catchments across north-eastern NSW, Australia. Despite having average pH values<3.9, 78 and 58% of Al and total Fe, respectively, were present as neutral or negatively-charged species. Complementary isotope dilution experiments with (55)Fe and (26)Al demonstrated that only soluble (i.e. no colloidal) species were present. Trivalent rare earth elements (REEs) were also mainly present (>70%) as negatively-charged complexes. In contrast, the speciation of the divalent trace metals Co, Mn, Ni and Zn was dominated by positively-charged complexes and was strongly correlated with the alkaline earth metals Ca and Mg. Thermodynamic equilibrium speciation calculations indicated that natural organic matter (NOM) complexes dominated Fe(III) speciation in agreement with that obtained by Donnan dialysis. In the case of Fe(II), however, the free cation was predicted to dominate under thermodynamic equilibrium, whilst our results indicated that Fe(II) was mainly present as neutral or negatively-charged complexes (most likely with sulfate). For all other divalent metals thermodynamic equilibrium speciation calculations agreed well with the Donnan dialysis results. The proportion of Al and REEs predicted to be negatively-charged was also grossly underestimated, relative to the experimental results, highlighting possible inaccuracies in the stability constants developed for these trivalent Me(SO4)2(-) and/or Me-NOM complexes and difficulties in modeling complex environmental samples. These results will help improve metal mobility and toxicity models developed for CLASS-affected environments, and also demonstrate that Australian CLASS environments can discharge REEs at concentrations an order of magnitude greater than previously reported.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2016.01.024 | DOI Listing |
Adv Sci (Weinh)
January 2025
Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe, 6500034, Japan.
Membrane technology holds significant potential for the recovery of acids and alkalis from industrial wastewater systems, with ion exchange membranes (IEMs) playing a crucial role in these applications. However, conventional IEMs are limited to separating only monovalent cations or anions, presenting a significant challenge in achieving concomitant H⁺/OH⁻ permselectivity for simultaneous acid and alkali recovery. To address this issue, the charged microporous polymer framework membranes are developed, featuring rigid Tröger's Base network chains constructed through a facile sol-gel process.
View Article and Find Full Text PDFInt J Artif Organs
December 2024
Global Systems Engineering, VS Machines, Care Enablement, Fresenius Medical Care Deutschland GmbH, Schweinfurt, Bavaria, Germany.
Clinical studies have shown that hemodiafiltration reduces morbidity and mortality of dialysis patients compared to hemodialysis alone. This is attributed to its superior middle molecule clearance compared to standard hemodialysis. However, doubts arose as to whether a high convective flux through the dialyzer membrane has an influence on the equilibrium concentration of small ions, especially that of sodium.
View Article and Find Full Text PDFASAIO J
October 2024
From the Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy.
Continuous venovenous hemofiltration (CVVH) is frequently performed in critically ill patients using diluted citrate for regional anticoagulation. The impact of this renal replacement strategy on plasma sodium has not been evaluated yet. Our aim was therefore to assess the period prevalence of hyponatremia (sodium <135 mmol/L) during CVVH and discuss possible underlying mechanisms.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2024
Membrane Science and Technology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands. Electronic address:
At the interface between an ion-exchange membrane and a multi-electrolyte solution, charged species redistribute themselves to minimize the free energy of the system. In this paper, we explore the Donnan equilibrium of membranes with quaternary electrolyte (Na/Mg/K/Ca/Cl) solutions, experimentally. The data was used to calculate the ion activity coefficients for six commercial cation-exchange membranes (CEMs).
View Article and Find Full Text PDFWater Res
June 2024
Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States. Electronic address:
Recovering ammonia nitrogen from wastewater is a sustainable strategy that simultaneously addresses both nitrogen removal and fertilizer production. Membrane electrochemical system (MES), which utilizes electrochemical redox reactions to transport ammonium ions through cation exchange membranes, has been considered as an effective technology for ammonia recovery from wastewater. In this study, we develop a mathematical model to systematically investigate the impact of co-existing ions on the transport of ammonium (NH) ions in MES.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!