Realistic surrogate nuclear debris is needed within the nuclear forensics community to test and validate post-detonation analysis techniques. Here we outline a novel process for producing bulk surface debris using a high temperature furnace. The material developed in this study is physically and chemically similar to trinitite (the melt glass produced by the first nuclear test). This synthetic nuclear melt glass is assumed to be similar to the vitrified material produced near the epicenter (ground zero) of any surface nuclear detonation in a desert environment. The process outlined here can be applied to produce other types of nuclear melt glass including that likely to be formed in an urban environment. This can be accomplished by simply modifying the precursor matrix to which this production process is applied. The melt glass produced in this study has been analyzed and compared to trinitite, revealing a comparable crystalline morphology, physical structure, void fraction, and chemical composition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4781065 | PMC |
http://dx.doi.org/10.3791/53473 | DOI Listing |
Sci Rep
January 2025
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Nanoscale Fourier transform infrared (Nano-FTIR) imaging and spectroscopy correlated with photoluminescence measurements of lunar Apollo samples with different surface radiation exposure histories reveal distinct physical and chemical differences associated with space weathering effects. Analysis of two sample fragments: an ilmenite basalt (12016) and an impact melt breccia (15445) show evidence of intrinsic or delivered Nd and an amorphous silica glass component on exterior surfaces, whereas intrinsic Cr and/or trapped electron states are limited to interior surfaces. Spatially localized 1050 cm/935 cm band ratios in Nano-FTIR hyperspectral maps may further reflect impact-induced shock nanostructures, while shifts in silicate band positions indicate accumulated radiation damage at the nanoscale from prolonged space weathering due to micrometeorites, solar wind, energetic x-rays and cosmic ray bombardment.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China.
Macromolecules
December 2024
Department οf Physics, University οf Ioannina, Ioannina 45110, Greece.
We report the pressure-temperature (-) phase diagram, the origin of the subglass dynamics, and the crystallization kinetics of the biobased polyester poly(ethylene 2,5-furanoate) (PEF), through dielectric spectroscopy (DS) measurements performed as a function of temperature and pressure. The phase diagram comprises four different "phases"; glass, quenched melt, crystalline, and normal melt. The cold crystallization temperature, , increases linearly with pressure (according to the Clausius-Clapeyron equation) as / ∼ 240 K·GPa and is accompanied by a small change in specific volume (Δ = 0.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Geomat Lab, IPGP, CNRS, UPC, 1 Rue Jussieu, 75005 Paris, France.
The viscosity of silicate melts is one of the most important physical properties for understanding high-temperature phenomena in magmatic systems and material processing. The effects of composition and temperature on viscosity have long been elucidated. Although iron ions are the main components of magmatic systems, their influence on viscosity remains unclear because the behavior of iron is complicated; iron ions have two redox states, Fe3+ and Fe2+.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Physics, Faculty of Science, Menoufia University, Shebin El-Koom, Menoufia, 32511, Egypt.
Barium fluoride borosilicate glass samples reinforced with varying amounts of GdO (BSBLG0-BSBLG4) have been manufactured using the conventional melt quenching procedure in order to provide additional research on the type of borosilicate glass. Structural, physical, and linear optical characteristics as well as γ-ray attenuation capacity of barium fluoride borosilicate doped with GdO was investigated. X-ray diffraction pattern proving the amorphous nature of the glass samples due to the absence of a distinctive crystalline characteristic peak.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!