Attractors in Sequence Space: Peptide Morphing by Directed Simulated Evolution.

Mol Inform

Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland.

Published: August 2015

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712357PMC
http://dx.doi.org/10.1002/minf.201500089DOI Listing

Publication Analysis

Top Keywords

attractors sequence
4
sequence space
4
space peptide
4
peptide morphing
4
morphing directed
4
directed simulated
4
simulated evolution
4
attractors
1
space
1
peptide
1

Similar Publications

The topology of a chaotic attractor in the Kuramoto-Sivashinsky equation.

Chaos

January 2025

Emergent Complexity in Physical Systems Laboratory (ECPS), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.

The Birman-Williams theorem gives a connection between the collection of unstable periodic orbits (UPOs) contained within a chaotic attractor and the topology of that attractor, for three-dimensional systems. In certain cases, the fractal dimension of a chaotic attractor in a partial differential equation (PDE) is less than three, even though that attractor is embedded within an infinite-dimensional space. Here, we study the Kuramoto-Sivashinsky PDE at the onset of chaos.

View Article and Find Full Text PDF

This contribution is part of the special issue on the Hippocampus focused on personal histories of advances in knowledge on the hippocampus and related structures. An account is offered of the author's role in the development of neural ensemble recording: stereo recording (stereotrodes, tetrodes) and the use of this approach to search for evidence of Hebb's "cell assemblies" and "phase sequences", the holy grail of the neuroscience of learning and memory.

View Article and Find Full Text PDF

This study estimates the performance of a piezoelectric energy harvester (PEH) with rotatable external magnets from the viewpoint of global dynamics. According to static analysis of the PEH dynamic system, the monostable and bistable potential wells are configured under different values of the inclined angle of the external magnets. In the monostable case, the method of multiple scales is applied for the analysis of periodic responses, while the extended averaging method and the Melnikov method are utilized to analyze the periodic and chaotic responses in the bistable case.

View Article and Find Full Text PDF

This paper explores a discrete-time system derived from the well-known continuous-time Rosenzweig-MacArthur model using the piecewise constant argument. Examining the impact of increasing carrying capacity and harvesting efforts, we uncover intricate phenomena, such as periodicity, quasiperiodicity, period-doubling, period-bubbling, and chaos. Our analysis reveals that increasing the carrying capacity of prey species can lead to both system stabilization and destabilization.

View Article and Find Full Text PDF

Understanding cancer from a biophysical, developmental and systems biology perspective using the landscapes-attractor model.

Biosystems

January 2025

Ludwig Boltzmann Institute for Hematology & Oncology, Department of Medicine I, Comprehensive Cancer Center (CCC), Medical University of Vienna, Waehringer Guertel 18 - 20, A-1090, Vienna, Austria. Electronic address:

Biophysical, developmental and systems-biology considerations enable deeper understanding why cancer is life threatening despite intensive research. Here we use two metaphors. Both conceive the cell genome and the encoded molecular system as an interacting gene regulatory network (GRN).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!