Extensive Transcriptome Changes Underlying the Flower Color Intensity Variation in Paeonia ostii.

Front Plant Sci

Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of SciencesShanghai, China; School of Landscape Architecture, Beijing Forestry UniversityBeijing, China.

Published: January 2016

Tree peonies are a group of traditional ornamental plants, especially in East Asia, with Paeonia ostii as one of the most important ancestral species. P. ostii has flowers with varying colors, ranging from nearly white, light pink to deep pink. However, few studies have been done to unravel the molecular mechanisms underlying the flower color intensity variation in plants. Based on comparative analyses of the pigment composition and transcriptomes of P. ostii with different flower color intensities, we found that the anthocyanin concentration was significantly correlated with the flower color intensity in P. ostii. Transcriptome analysis by RNA-Sequencing revealed 7187 genes that were differentially expressed between flowers with different color intensities. Functional enrichment analysis of differentially expressed genes revealed multiple pathways possibly responsible for color intensity variation in P. ostii, including flavonoid biosynthesis, fatty acid oxidation, carbohydrate metabolism, and hormone-mediated signaling. Particularly, while anthocyanin biosynthesis genes showing positive correlations between their expression and anthocyanin concentration in flowers, two transcription factors, PoMYB2 and PoSPL1, seem to negatively regulate anthocyanin accumulation by affecting the activation capacity of the MYB-bHLH-WDR complex, exhibiting an inverse relationship between their expression and anthocyanin accumulation. Our results showed that, although anthocyanin biosynthesis had a direct effect on the pigmentation of the P. ostii flower, other metabolic and hormone-mediated signaling pathways were also contributed to the flower color intensity variation in P. ostii, suggesting complex coordinated changes in the transcriptional network. Differential expression of genes encoding anthocyanin repressors seems to be the major factor responsible for the intensity variation in anthocyanin pigmentation in P. ostii.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702479PMC
http://dx.doi.org/10.3389/fpls.2015.01205DOI Listing

Publication Analysis

Top Keywords

flower color
20
color intensity
20
intensity variation
20
ostii
9
underlying flower
8
paeonia ostii
8
ostii flower
8
color intensities
8
anthocyanin
8
anthocyanin concentration
8

Similar Publications

Background: WRKY transcription factors constitute one of the largest families of plant transcriptional regulators, playing pivotal roles in plant responses to biotic and abiotic stresses, as well as in hormonal signaling and secondary metabolism regulation. However, a comprehensive analysis of the WRKY family in Carthamus tinctorius (safflower) is lacking. This study aims to identify and characterize WRKY genes in safflower to enhance understanding of their roles in stress responses and metabolic regulation.

View Article and Find Full Text PDF

Chongqing Old Rose is an ancient edible rose variety native to Chongqing, China, but is under-reported. Further evidence is required to fully establish its potential benefits. The complete metabolic profiles were examined for comparative analysis between the Old Rose and three rose cultivars.

View Article and Find Full Text PDF

Spatial and Temporal Regulation of Flower Coloration in Cymbidium lowianum.

Plant Cell Environ

January 2025

Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.

Flower color is a crucial trait that attracts pollinators and determines the ornamental value of floral crops. Cymbidium lowianum, one of the most important breeding parent of Cymbidium hybrids, has two flower morphs (normal and albino) that differ in flower lip color. However, the molecular mechanisms underlying flower color formation in C.

View Article and Find Full Text PDF

To enhance the drying quality of peony flowers, this study developed an integrated intelligent control and monitoring system. The system incorporates computer vision technology to enable real-time continuous monitoring and analysis of the total color change (ΔE) and shrinkage rate (SR) of the material. Additionally, by integrating drying time and temperature data, a hybrid neural network model combining convolutional neural networks, long short-term memory, and attention mechanisms (CNN-LSTM-Attention) was employed to accurately predict the moisture ratio (MR) of peony flowers.

View Article and Find Full Text PDF

Disocatus ackermannii, commonly referred to as Orchid Cactus, is a striking succulent belonging to the Cactaceae family. Its unique appearance and captivating characteristics make it a sought-after addition to gardens and courtyards beautification. In June 2023, 20-30% of D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!