Systemic administration of a gamma-amino butyric acid type B (GABAB) receptor agonist, baclofen, affects various physiological and psychological processes. To date, the effects on oculomotor system have been well characterized in primates, however those in mice have not been explored. In this study, we investigated the effects of baclofen focusing on vestibular-related eye movements. Two rotational paradigms, i.e. sinusoidal rotation and counter rotation were employed to stimulate semicircular canals and otolith organs in the inner ear. Experimental conditions (dosage, routes and onset of recording) were determined based on the prior studies exploring the behavioral effects of baclofen in mice. With an increase in dosage, both canal and otolith induced ocular responses were gradually affected. There was a clear distinction in the drug sensitivity showing that eye movements derived from direct vestibulo-ocular reflex pathways were relatively unaltered, while the responses through higher-order neural networks in the vestibular system were substantially decreased. These findings were consistent with those observed in primates suggesting a well-conserved role of GABAB receptors in the oculomotor system across frontal-eyed and lateral-eyed animals. We showed here a previously unrecognized effect of baclofen on the vestibular oculomotor function in mice. When interpreting general animal performance under the drug, the potential contribution of altered balance system should be taken into consideration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769675 | PMC |
http://dx.doi.org/10.1016/j.bbr.2016.01.017 | DOI Listing |
Atten Percept Psychophys
January 2025
U.S. DEVCOM Army Research Laboratory, Humans in Complex Systems, Aberdeen Proving Ground, MD, USA.
Historically, electrophysiological correlates of scene processing have been studied with experiments using static stimuli presented for discrete timescales where participants maintain a fixed eye position. Gaps remain in generalizing these findings to real-world conditions where eye movements are made to select new visual information and where the environment remains stable but changes with our position and orientation in space, driving dynamic visual stimulation. Co-recording of eye movements and electroencephalography (EEG) is an approach to leverage fixations as time-locking events in the EEG recording under free-viewing conditions to create fixation-related potentials (FRPs), providing a neural snapshot in which to study visual processing under naturalistic conditions.
View Article and Find Full Text PDFVision (Basel)
January 2025
Centre Gilles Gaston Granger, UMR 7304 Centre National de la Recherche Scientifique, Aix Marseille Université, 13621 Aix-en-Provence, France.
The appearance of an object triggers an orienting gaze movement toward its location. The movement consists of a rapid rotation of the eyes, the saccade, which is accompanied by a head rotation if the target eccentricity exceeds the oculomotor range and by a slow eye movement if the target moves. Completing a previous report, we explain the numerous points that lead to questioning the validity of a one-to-one correspondence relation between measured physical values of gaze or head orientation and neuronal activity.
View Article and Find Full Text PDFFront Neurosci
January 2025
Vision and Neural Engineering Laboratory, Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States.
Introduction: The vergence neural system was stimulated to dissect the afferent and efferent components of symmetrical vergence eye movement step responses. The hypothesis tested was whether the afferent regions of interest would differ from the efferent regions to serve as comparative data for future clinical patient population studies.
Methods: Thirty binocularly normal participants participated in an oculomotor symmetrical vergence step block task within a functional MRI experiment compared to a similar sensory task where the participants did not elicit vergence eye movements.
J Cosmet Dermatol
January 2025
Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea.
Objective: Ultrasonographic examination is easy, fast, safe, and used in various fields; however, its application to the facial area has been limited. Complex anatomical structures are mixed within thin, soft tissues in the facial region; therefore, understanding their structural characteristics is crucial. This study aimed to use ultrasonography to obtain information on the layered structure and soft tissue thickness of the eye area around the orbicularis oculi muscle and provide guidance for clinical practice.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK. Electronic address:
Animals construct diverse behavioral repertoires by moving a limited number of body parts with varied kinematics and patterns of coordination. There is evidence that distinct movements can be generated by changes in activity dynamics within a common pool of motoneurons or by selectively engaging specific subsets of motoneurons in a task-dependent manner. However, in most cases, we have an incomplete understanding of the patterns of motoneuron activity that generate distinct actions and of how upstream premotor circuits select and assemble such motor programs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!