A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Salt-inducible Kinase (SIK1) regulates HCC progression and WNT/β-catenin activation. | LitMetric

Salt-inducible Kinase (SIK1) regulates HCC progression and WNT/β-catenin activation.

J Hepatol

National Center for International Research of Biological Targeting Diagnosis and Therapy(Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research)Guangxi Medical University, Nanning, Guangxi, China; Department of Surgery, Robert-Wood-Johnson Medical School University Hospital, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA. Electronic address:

Published: May 2016

Background & Aims: In this study, we investigated the role of salt-inducible kinase 1 (SIK1) and its possible mechanisms in human hepatocellular carcinoma (HCC).

Methods: Immunoprecipitation, immunohistochemistry, luciferase reporter, Chromatin immunoprecipitation, in vitro kinase assays and a mouse model were used to examine the role of SIK1 on the β-catenin signaling pathway.

Results: SIK1 was significantly downregulated in HCC compared with normal controls. Its introduction in HCC cells markedly suppresses epithelial-to-mesenchymal transition (EMT), tumor growth and lung metastasis in xenograft tumor models. The effect of SIK1 on tumor development occurs at least partially through regulation of β-catenin, as evidenced by the fact that SIK1 overexpression leads to repression of β-catenin transcriptional activity, while SIK1 depletion has the opposite effect. Mechanistically, SIK1 phosphorylates the silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) at threonine (T)1391, which promotes the association of nuclear receptor corepressor (NCoR)/SMRT with transducin-beta-like protein 1 (TBL1)/transducing-beta-like 1 X-linked receptor 1 (TBLR1) and disrupts the binding of β-catenin to the TBL1/TBLR1 complex, thereby inactivating the Wnt/β-catenin pathway. However, SMRT-T1391A reverses the phenotype of SIK1 and promotes β-catenin transactivation. Twist1 is identified as a critical factor downstream of SIK1/β-catenin axis, and Twist1 knockdown (Twist1(KD)) reverses SIK1(KD)-mediated changes, whereas SIK1(KD)/Twist1(KD) double knockdown cells were less efficient in establishing tumor growth and metastasis than SIK1(KD) cells. The promoter activity of SIK1 were negatively regulated by Twist1, indicating that a double-negative feedback loop exists. Importantly, levels of SIK1 inversely correlate with Twist1 expression in human HCC specimens.

Conclusions: Our findings highlight the critical roles of SIK1 and its targets in the regulation of HCC development and provides potential new candidates for HCC therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2016.01.005DOI Listing

Publication Analysis

Top Keywords

sik1
12
salt-inducible kinase
8
kinase sik1
8
tumor growth
8
activity sik1
8
hcc
6
β-catenin
5
sik1 regulates
4
regulates hcc
4
hcc progression
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!