Objective: We observed several children with medically resistant epilepsy demonstrating focal positron emission tomography (PET) hypermetabolism, a finding rarely reported and of questionable significance. We therefore retrospectively reviewed the incidence of hypermetabolic PET, and its relationship to electroencephalography (EEG) and magnetic resonance imaging (MRI) findings, and to the outcome of epilepsy surgery.

Methods: We retrospectively reviewed 498 PET brain studies in patients with medically resistant childhood epilepsy for evidence of hypermetabolism. In patients with PET hypermetabolism, we correlated metabolic abnormality with the scalp EEG and MRI findings. In a subset of patients who underwent surgical resection, we further correlated the PET findings with histopathologic and surgical outcomes.

Results: Focal PET hypermetabolism was identified in 33 (6.6%) of 498 studies. The region of hypermetabolism correlated with a spike count of ≥10 per minute in 26 of 32 concomitant scalp EEG studies and 18 of 21 lesions evident on MRI. In 17 patients who underwent surgical resection, PET hypermetabolism further correlated with regions revealing almost continuous epileptiform discharges on the intracranial EEG and with histopathologically malformative tissue. At a minimum follow-up of 1 year postsurgery (median 33 months), 7 (50%) of 14 patients had Engel's class I outcome, 4 patients had class II, and 2 had class III outcome, whereas one patient was unchanged. At last follow-up, seizure freedom was noted in five of seven patients with focal PET hypermetabolism alone versus three of eight patients with PET hypometabolism.

Significance: Focal PET hypermetabolism is associated with high spike frequency on scalp EEG and can occur in the absence of ictal events during the peri-injection period. Correlation with intracranial EEG usually corroborates the highly epileptogenic pathophysiologic state. Cortical malformations constitute the most common pathologic substrate, and resection of the hypermetabolic PET region may facilitate favorable outcomes. These observations indicate that focal PET hypermetabolism is an important marker of the epileptogenic zone and may represent its epicenter.

Download full-text PDF

Source
http://dx.doi.org/10.1111/epi.13311DOI Listing

Publication Analysis

Top Keywords

pet hypermetabolism
32
focal pet
16
pet
13
medically resistant
12
hypermetabolism correlated
12
scalp eeg
12
hypermetabolism
9
resistant childhood
8
childhood epilepsy
8
retrospectively reviewed
8

Similar Publications

: This study evaluates the diagnostic accuracy of [18F]fluorodeoxyglucose ([F]FDG) positron emission tomography (PET) using bone marrow biopsy (BMB) and clinical follow-up as reference standards. It further identifies predictive factors for bone marrow involvement (BMI) in non-Hodgkin lymphoma (NHL) patients. : NHL patients who underwent [F]FDG PET and BMB at diagnosis in a tertiary cancer center were included in this study.

View Article and Find Full Text PDF

Subcutaneous nodules and masses as the primary manifestation of diffuse large B-cell lymphoma are exceedingly rare. We present 18F-FDG PET/CT findings of multiple hypermetabolic nodules and masses distributed throughout the body, creating a characteristic "leopard man" appearance on the MIP image, in a 65-year-old man. An excisional biopsy of the right thigh mass confirmed the diagnosis of diffuse large B-cell lymphoma.

View Article and Find Full Text PDF

A 54-year-old man presented with a 1-month history of pain and numbness in the right lower limb. Lumbar spine MRI revealed bone metastases. 18F-FDG PET/CT showed a soft tissue mass with increased 18F-FDG uptake in the rectum, accompanied by multiple hypermetabolic lesions in the bilateral ribs, spine, pelvis, and upper right femur.

View Article and Find Full Text PDF

Purpose: In addition to rodent models, the chick embryo model has gained attention for radiotracer evaluation. Previous studies have investigated tumours on the chorioallantoic membrane (CAM), but its value for radiotracer imaging of intracerebral tumours has yet to be demonstrated.

Procedures: Human U87 glioblastoma cells and U87-IDH1 mutant glioma cells were implanted into the brains of chick embryos at developmental day 5.

View Article and Find Full Text PDF

Objectives: Parkinson's disease (PD) is a neurodegenerative disorder with distinct metabolic alterations in the brain, which are detectable via 18F-FDG PET. This study aims to delineate glucose metabolism patterns and network topology changes across early- and mid-stage PD patients.

Methods: A total of 80 PD patients (Hoehn-Yahr stages 1-3) were retrospectively analyzed, including 40 early-stage and 40 mid-stage cases, along with 40 age-matched healthy controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!