Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Moxibustion is an important traditional Chinese medicine therapy using heat from ignited moxa floss for disease treatment. The purpose of the present study is to establish a reproducible method to assess the color of moxa floss, discriminate the samples based on chromatic coordinates and explore the relationship between chromatic coordinates and total flavonoid content (TFC).
Methods: Moxa floss samples of different storage years and production ratios were obtained from a moxa production factory in Henan Province, China. Chromatic coordinates (L*, a* and b*) were analyzed with an ultraviolet-visible spectrophotometer and the chroma (C*) and hue angle (h°) values were calculated. TFC was determined by a colorimetric method. Data were analyzed with correlation, principal component analysis (PCA).
Results: Significant differences in the chromatic values and TFC were observed among samples of different storage years and production ratios. Samples of higher production ratio displayed higher chromatic characteristics and lower TFC. Samples of longer storage years contained higher TFC. Preliminary separation of moxa floss production ratio was obtained by means of color feature maps developed using L*-a* or L*-b* as coordinates. PCA allowed the separation of the samples from their storage years and production ratios based on their chromatic characteristics and TFC.
Conclusion: The use of a colorimetric technique and CIELAB coordinates coupled with chemometrics can be practical and objective for discriminating moxa floss of different storage years and production ratios. The development of color feature maps could be used as a model for classifying the color grading of moxa floss.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S2095-4964(16)60239-X | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!