Objective: In this study, we aimed to elucidate the restorative effects of olfactory epithelium neural stem cells (oe-NSCs) implantation on noise-induced hearing loss and establish their mechanism of action.
Methods: To model hearing loss, rats were subjected to consecutive seven-day noise exposure. Then, oe-NSCs were implanted into cochlear tissue by retroauricular approach. Auditory brainstem response (ABR) method was used to evaluate the hearing function. Immunohistochemical staining was utilized to determine cell survival and migration of oe-NSCs. After IL-1β stimulation, nerve growth factor (NGF), neurotrophin-3 (NT-3), and NT-4 levels were evaluated in oe-NSCs. The protective action of oe-NSCs against hydrogen peroxide-induced cell injury was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL).
Results: oe-NSCs implantation into cochlear tissues ameliorated the noise-induced hearing impairment (p<0.05). After implantation, green fluorescent cells were observed in an even suspension in the lymph fluid of the cochlea, and 65% of the GFP(+) cells reached the cochlear duct wall three days after implantation, but did not expand to the Corti-organ. After IL-1β stimulation, olfactory epithelial stem cell increased their secretion of NGF and NT-3 (p<0.05), but not that of NT-4. TUNEL assay results revealed that oe-NSCs co-culturing with injured neurons reduced the apoptotic cell death induced by hydrogen peroxide.
Conclusion: After transplantation into the inner ear, oe-NSCs not only survived, but also migrated around the spiral ganglion neurons (SGNs) in Rosenthal's canal (RC). Hearing loss induced by noise exposure was restored after oe-NSCs implantation. Mechanically, oe-NSCs secreted NGF and NT-3, which likely contributed to the prevention of neuronal injury. This study provides novel data in support of the effective action of implanted oe-NSCs in the restoration of noise-induced hearing loss in a rat model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2016.01.016 | DOI Listing |
Unlabelled: Exposure to loud and/or prolonged noise damages cochlear hair cells and triggers downstream changes in synaptic and electrical activity in multiple brain regions, resulting in hearing loss and altered speech comprehension. It remains unclear however whether or not noise exposure also compromises the cochlear efferent system, a feedback pathway in the brain that fine-tunes hearing sensitivity in the cochlea. We examined the effects of noise-induced hearing loss on the spontaneous action potential (AP) firing pattern in mouse lateral olivocochlear (LOC) neurons.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) is one of the most commonly used tools in neuroscience. However, it implies exposure to high noise levels. Exposure to noise can lead to temporary or permanent hearing loss, especially when the exposure is long and/or repeated.
View Article and Find Full Text PDFIntroduction: With the introduction of increasingly powerful audio equipment and increase of personal mobile audio devices in the 21st century, the prevalence of noise-induced hearing loss (NIHL) in young adults is expected to increase. This increase, estimated to impact 30 million adults in the next four decades, is due in part to recreational exposure. While many young adults have a general understanding of NIHL, a detailed education on various topics of NIHL could further promote adherence to the use of preventive measures.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
Loud noise exposure is one of the leading causes of permanent hearing loss. Individuals with noise-induced hearing loss (NIHL) suffer from speech comprehension deficits and experience impairments to cognitive functions such as attention and decision-making. Here, we investigate the specific underlying cognitive processes during auditory perceptual decision-making that are impacted by NIHL.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Otolaryngology, Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
Sensorineural hearing loss (SNHL) is an increasingly prevalent sensory disorder, but the underlying mechanisms remain poorly understood. Adaptor related protein complex 2 subunit beta 1 (AP2B1) has been indicated to be detectable in mature cochleae. Nonetheless, it is unclear whether AP2B1 is implicated in the progression of SNHL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!