Objective: In routine nerve conduction studies supramaximal electrical stimuli generate sensory nerve action potentials by depolarization of nerve fibers under the cathode. However, stimuli of submaximal intensity may give rise to action potentials generated under the anode. We tested if this phenomenon depends on the characteristics of stimulus ending.

Methods: We added a circuit to our stimulation device that allowed us to modify the end of the stimulus by increasing the time constant of the decay phase.

Results: Increasing the fall time caused a reduction of anode action potential (anAP) amplitude, and eventually abolished it, in all tested subjects. We subsequently examined the stimulus waveform in a series of available electromyographs stimulators and found that the anAP could only be obtained with stimulators that issued stimuli ending sharply.

Conclusion: Our results prove that the anAP is generated at stimulus end, and depends on the sharpness of current shut down. Electromyographs produce stimuli of varying characteristics, which limits the reproducibility of anAP results by interested researchers.

Significance: The study of anodal action potentials might be a useful tool to have a quick appraisal of distal human sensory nerve excitability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinph.2015.12.012DOI Listing

Publication Analysis

Top Keywords

action potentials
16
sensory nerve
12
stimulus waveform
8
nerve action
8
stimulus
5
nerve
5
action
5
waveform determines
4
determines characteristics
4
characteristics sensory
4

Similar Publications

MuSK regulates neuromuscular junction Nav1.4 localization and excitability.

J Neurosci

January 2025

Carney Institute for Brain Science, Brown University, Providence, RI 02912

The neuromuscular junction (NMJ) is the linchpin of nerve-evoked muscle contraction. Broadly, the function of the NMJ is to transduce nerve action potentials into muscle fiber action potentials (MFAPs). Efficient neuromuscular transmission requires both cholinergic signaling, responsible for generation of endplate potentials (EPPs), and excitation, the amplification of the EPP by postsynaptic voltage-gated sodium channels (Nav1.

View Article and Find Full Text PDF

Voltage-gated potassium conductances [Formula: see text] play a critical role not only in normal neural function, but also in many neurological disorders and related therapeutic interventions. In particular, in an important animal model of epileptic seizures, 4-aminopyridine (4-AP) administration is thought to induce seizures by reducing [Formula: see text] in cortex and other brain areas. Interestingly, 4-AP has also been useful in the treatment of neurological disorders such as multiple sclerosis (MS) and spinal cord injury, where it is thought to improve action potential propagation in axonal fibers.

View Article and Find Full Text PDF

Action potentials (spikes) are regenerated at each node of Ranvier during saltatory transmission along a myelinated axon. The high density of voltage-gated sodium channels required by nodes to reliably transmit spikes increases the risk of ectopic spike generation in the axon. Here we show that ectopic spiking is avoided because K1 channels prevent nodes from responding to slow depolarization; instead, axons respond selectively to rapid depolarization because K1 channels implement a high-pass filter.

View Article and Find Full Text PDF

Nutrient circularity from waste to fertilizer: A perspective from LCA studies.

Sci Total Environ

January 2025

Material Flow Management and Resource Economy, Institute IWAR, Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany.

Nutrient circularity, an exemplification of circular economy (CE), is situated in the waste/wastewater-agriculture nexus. Recycling nutrient elements from waste streams to fertilizer products amplify the sustainable management of resources and intersect technical and biological loops, a concept developed for CE. Such a complex system needs to be directed by robust assessment methods such as life cycle assessment (LCA) to identify trade-offs and potentials.

View Article and Find Full Text PDF

Bioaugmented design and functional evaluation of low damage implantable array electrodes.

Bioact Mater

May 2025

State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China.

Implantable neural electrodes are key components of brain-computer interfaces (BCI), but the mismatch in mechanical and biological properties between electrode materials and brain tissue can lead to foreign body reactions and glial scarring, and subsequently compromise the long-term stability of electrical signal transmission. In this study, we proposed a new concept for the design and bioaugmentation of implantable electrodes (bio-array electrodes) featuring a heterogeneous gradient structure. Different composite polyaniline-gelatin-alginate based conductive hydrogel formulations were developed for electrode surface coating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!